Distributional Chaoticity of C0-Semigroup on a Frechet Space
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (where is the identity operator on );
- (ii)
- ;
- (iii)
- .
3. Distributional Chaos in a Sequence of C0-Semigroup
4. Distributionally Chaotic C0-Semigroup
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (i)
- is distributionally chaotic;
- (ii)
- , is distributionally chaotic;
- (iii)
- There existssuch thatis distributionally chaotic.
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, T.Y.; Yorke, J. Period three implies chaos. Am. Math. Mon. 1975, 82, 985–992. [Google Scholar] [CrossRef]
- Buscarino, A.; Fortuna, L.; Frasca, M. Forword action to make a systems negative imaginary. Syst. Control Lett. 2016, 94, 57–62. [Google Scholar] [CrossRef]
- Buscarino, A.; Fortuna, L.; Frasca, M. Experimental robust synchronization of hyperchaotic circuits. Phys. D Nonlinear Phenom. 2009, 238, 1917–1922. [Google Scholar] [CrossRef]
- Wu, X.X.; Ding, X.F.; Lu, T.X.; Wang, J.J. Topological dynamics of Zadeh’s extension on upper semi-continuous fuzzy sets. Int. J. Bifurc. Chaos 2017, 27, 1750165. [Google Scholar] [CrossRef]
- Wu, X.X.; Ma, X.; Zhu, Z.; Lu, T.X. Topological ergodic shadowing and chaos on uniform spaces. Int. J. Bifurc. Chaos 2018, 28, 1850083. [Google Scholar] [CrossRef]
- Tang, X.; Chen, G.R.; Lu, T.X. Some iterative properties of -chaos in nonautonomous discrete systems. Entropy 2018, 20, 188. [Google Scholar] [CrossRef]
- Wu, X.X.; Luo, Y.; Ma, X.; Lu, T.X. Rigidity and sensitivity on uniform spaces. Topol. Appl. 2019, 252, 145–157. [Google Scholar] [CrossRef]
- Schweizer, B.; Smital, J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 1994, 344, 737–754. [Google Scholar] [CrossRef]
- Guirao, J.L.G.; Lampart, M. Relations between distributional, Li-Yorke, and -chaos. Chaos Soliton. Fract. 2006, 28, 788–792. [Google Scholar] [CrossRef]
- Oprocha, P. Distributional chaos revisited. Trans. Am. Math. Soc. 2009, 361, 4901–4925. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, B.; Sklar, A.; Smital, J. Distributional (and other) chaos and its measurement. Real Anal. Exch. 2000, 26, 495–524. [Google Scholar]
- Balibrea, F. On problems of topological dynamics in non-autonomous discrete systems. Appl. Math. Nonlinear Sci. 2016, 1, 391–404. [Google Scholar] [CrossRef]
- Li, C.Q.; Feng, B.B.; Li, S.J.; JKurths Chen, G.R. Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans. Circuits Syst. 2018. [Google Scholar] [CrossRef]
- Oprocha, P. A quantum harmonic oscillator and strong chaos. J. Phys. A Math. Gen. 2006, 39, 14559. [Google Scholar] [CrossRef]
- Wu, X.X.; Zhu, P.Y. The principal measure of a quantum harmonic oscillator. J. Phys. A Math. 2011, 44, 505101. [Google Scholar] [CrossRef]
- Albanese, A.A.; Barrachina, X.; Mangino, E.M.; Peris, A. Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 2013, 12, 2069–2082. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, N.C., Jr.; Bonilla, A.; Muller, V.; Peris, A. Distributional chaos for linear operators. J. Funct. Anal. 2013, 265, 2143–2163. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.B.; He, S.N.; Huang, Y. On Li-Yorke and distributionally chaotic direct sum operators. Topol. Appl. 2018, 239, 35–45. [Google Scholar] [CrossRef]
- Mangino, E.M.; Murillo-Arcila, M. Frequently hypercyclic translation semigroups. Studia Math. 2015, 227, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.X.; Chen, G.R.; Zhu, P.Y. Invariance of chaos from backward shift on the Kothe sequence space. Nonlinearity 2014, 27, 271–288. [Google Scholar] [CrossRef]
- Yin, Z.B.; Yang, Q.G. Distributionally scrambled set for an annihilation operator. Int. J. Bifurc. Chaos 2015, 25, 1550178. [Google Scholar] [CrossRef]
- Bayart, F.; Bermudez, T. Dynamics of Linear Operators; Cambridge University Press: Cambtidge, UK, 2009. [Google Scholar] [CrossRef]
- Grosse-Erdmann, K.G.; Peris, A. Linear chaos; Springer: London, UK, 2011; ISBN 978-1-4471-2170-1. [Google Scholar]
- Conejero, J.A.; Kostic, M.; Miana, P.J.; Murillo-Arcila, M. Distributionally chaotic families of operators on Frechet spaces. Commun. Pure Appl. Anal. 2016, 15, 1915–1939. [Google Scholar] [CrossRef]
- To-Ming Lau, A.; Takahashi, W. Fixed point properties for semigroup of nonexpansive mappings on Fréchet spaces. Nonlinear Anal. 2009, 70, 3837–3841. [Google Scholar] [CrossRef]
- Kalauch, A.; Gaans, O.V.; Zhang, F. Disjointness preserving -semigroups and local operators on ordered Banach spaces. Indagat. Math. 2018, 29, 535–547. [Google Scholar] [CrossRef]
- Albanesea, A.A.; Bonetb, J.; Ricker, W.J. -semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 2010, 365, 142–157. [Google Scholar] [CrossRef]
- Frerick, L.; Jordá, E.; Kalmes, T.; Wengenroth, J. Strongly continuous semigroups on some Frechet spaces. J. Math. Anal. Appl. 2014, 412, 121–124. [Google Scholar] [CrossRef]
- Stacho, L.L. On the structure of -semigroups of holomorphic Carathéodory isometries in Hilbert space. J. Math. Anal. Appl. 2017, 445, 139–150. [Google Scholar] [CrossRef]
- De Laubenfels, R.; Emamirad, H.; Grosse-Erdmann, K.-G. Chaos for semigroups of unbounded operators. Math. Nachr. 2003, 261, 47–59. [Google Scholar] [CrossRef]
- Barrachina, X.; Peris, A. Distributionally chaotic translation semigroups. J. Differ. Equ. Appl. 2012, 18, 751–761. [Google Scholar] [CrossRef]
- Desch, W.; Schappacher, W.; Webb, G.F. Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 1997, 17, 793–819. [Google Scholar] [CrossRef]
- Bermudez, T.; Bonilla, A.; Martinez-Gimenez, F.; Peris, A. Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 2011, 373, 83–93. [Google Scholar] [CrossRef]
- Barrachina, X.; Conejero, J.A. Devaney chaos and distributional chaos in the solution of certain parial differential equations. Abstr. Appl. Anal. 2012, 457019. [Google Scholar] [CrossRef]
- Wu, X.X. Maximal distributional chaos of weighted shift operators on Kothe sequence spaces. Czech. Math. J. 2014, 64, 105–114. [Google Scholar] [CrossRef]
- Martinez-Gimenez, F.; Oprocha, P.; Peris, A. Distributional chaos for backward shifts. J. Math. Anal. Appl. 2009, 351, 607–615. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Waseem, A.; Tang, X. Distributional Chaoticity of C0-Semigroup on a Frechet Space. Symmetry 2019, 11, 345. https://doi.org/10.3390/sym11030345
Lu T, Waseem A, Tang X. Distributional Chaoticity of C0-Semigroup on a Frechet Space. Symmetry. 2019; 11(3):345. https://doi.org/10.3390/sym11030345
Chicago/Turabian StyleLu, Tianxiu, Anwar Waseem, and Xiao Tang. 2019. "Distributional Chaoticity of C0-Semigroup on a Frechet Space" Symmetry 11, no. 3: 345. https://doi.org/10.3390/sym11030345
APA StyleLu, T., Waseem, A., & Tang, X. (2019). Distributional Chaoticity of C0-Semigroup on a Frechet Space. Symmetry, 11(3), 345. https://doi.org/10.3390/sym11030345