A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type
Abstract
:1. Introduction and Preliminaries
- (δ1)
- ,
- (δ2)
- ,
- (δ3)
- .
- (b1)
- ,
- (b2)
- ,
- (b3)
- ,
- (b4)
- .
- (δb1)
- ,
- (δb2)
- ,
- (δb3)
- .
- (i)
- ς is unique;
- (ii)
- , for all .
- (i)
- if then ;
- (ii)
- if then ;
- (iii)
- if is a sequence in such that then
- φ is increasing;
- , for .
- each is a comparison function, for all ;
- φ is continuous at 0;
- for all .
- φ is monotone increasing;
- , for all .
- φ is monotone increasing;
- , for all and a real number.
- (ψ1)
- is lower semicontinuous,
- (ψ2)
- if and only if .
2. Main Results
3. Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hitzler, P. Generalized Metrics and Topology in Logic Programming Semantics. Ph.D. Thesis, School of Mathematics, Applied Mathematics and Statistics, National University Ireland, University College Cork, Cork, Ireland, 2001. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Berinde, V. Generalized Contractions in Quasimetric Spaces; Seminar on Fixed Point Theory; Preprint No. 3; Babeş-Bolyai University: Cluj-Napoca, Romania, 1993; pp. 3–9. [Google Scholar]
- Berinde, V. Sequences of Operators and Fixed Points In Quasimetric Spaces; Babeş-Bolyai University: Cluj-Napoca, Romania, 1996; Volume 16, pp. 23–27. [Google Scholar]
- Alghamdi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 2013, 402. [Google Scholar] [CrossRef]
- Karapinar, E. A Short Survey on Dislocated Metric Spaces via Fixed-Point Theory. In Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Banas, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; Chapter 13; pp. 457–483. [Google Scholar] [CrossRef]
- Alqahtani, B.; Fulga, A.; Karapınar, E. A short note on the common fixed points of the Geraghty contraction of type ES,T. Demonstr. Math. 2018, 51, 233–240. [Google Scholar] [CrossRef]
- Bota, M.; Karapınar, E.; Mleşniţe, O. Ulam-Hyers stability for fixed point problems via α-ϕ-contractive mapping in b-metric spaces. Abstr. Appl. Anal. 2013, 2013, 855293. [Google Scholar] [CrossRef]
- Bota, M.; Chifu, C.; Karapınar, E. Fixed point theorems for generalized (α-ψ)-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Berinde, V. Construcţii Generalizate şi Aplicaţii; Editura Club Press 22: Baia Mare, Romania, 1997. [Google Scholar]
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Sehgal, V.M. On fixed and periodic points for a class of mappings. J. Lond. Math. Soc. 1972, 5, 571–576. [Google Scholar] [CrossRef]
- Ray, B.K.; Rhoades, B.E. Fixed point theorems for mappings with a contractive iterate. Pac. J. Math. 1977, 71, 344–348. [Google Scholar] [CrossRef]
- Guseman, L.F., Jr. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1970, 26, 615–618. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Initial value problems of fractional order Hadamard-type functional differential equations. Electron. J. Differ. Equ. 2015, 2015, 1–9. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E.; Fulga, A.; Alghamdi, M. A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. Symmetry 2019, 11, 470. https://doi.org/10.3390/sym11040470
Karapınar E, Fulga A, Alghamdi M. A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. Symmetry. 2019; 11(4):470. https://doi.org/10.3390/sym11040470
Chicago/Turabian StyleKarapınar, Erdal, Andreea Fulga, and Maryam Alghamdi. 2019. "A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type" Symmetry 11, no. 4: 470. https://doi.org/10.3390/sym11040470
APA StyleKarapınar, E., Fulga, A., & Alghamdi, M. (2019). A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. Symmetry, 11(4), 470. https://doi.org/10.3390/sym11040470