Iterative Algorithms for a System of Variational Inclusions in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- accretive if
- (ii)
- -inverse-strongly accretive if
- (iii)
- strictly pseudocontractive if
- (i)
- and ;
- (ii)
- ;
- (iii)
- Π is sunny nonexpansive operator.
- (i)
- ;
- (ii)
- either or .
3. Main Results
- (i)
- ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- .
- (a)
- solves the GSVI (1);
- (b)
- solves the variational inequality: .
- (i)
- ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- .
- (a)
- solves the GSVI (2);
- (b)
- solves the variational inequality: .
- (i)
- ;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- .
- (a)
- solves the GSVI (2);
- (b)
- solves the variational inequality: .
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lions, J.L.; Stampacchia, G. Variational inequalities. Commun. Pure Appl. Math. 1967, 20, 493–517. [Google Scholar] [CrossRef]
- Ceng, L.C.; Guu, S.M.; Yao, J.C. Weak convergence theorem by a modified extragradient method for variational inclusions, variational inequalities and fixed point problems. J. Nonlinear Convex Anal. 2013, 14, 21–31. [Google Scholar]
- Ceng, L.C.; Latif, A.; Yao, J.C. On solutions of a system of variational inequalities and fixed point problems in Banach spaces. Fixed Point Theory Appl. 2013, 2013, 176. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Wang, C.Y.; Yao, J.C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 2008, 67, 375–390. [Google Scholar] [CrossRef]
- Ceng, L.C.; Latif, A.; Ansari, Q.H.; Yao, J.C. Hybrid extragradient method for hierarchical variational inequalities. Fixed Point Theory Appl. 2014, 2014, 222. [Google Scholar] [CrossRef] [Green Version]
- Chinedu, I.; Christian, O.C.; Felicia, O.I. A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space. J. Fixed Point Theory Appl. 2018, 20, 157. [Google Scholar]
- Yao, Y.; Liou, Y.C.; Kang, S.M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59, 3472–3480. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Plubtieng, S.; Wong, M.M.; Yao, J.C. System of variational inequalities with constraints of mixed equilibria, variational inequalities, and convex minimization and fixed point problems. J. Nonlinear Convex Anal. 2015, 16, 385–421. [Google Scholar]
- Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019. [Google Scholar] [CrossRef]
- Pongsakorn, S.; Prasit, C. Iterative methods for solving quasi-variational inclusion and fixed point problem in q-uniformly smooth Banach spaces. Numer. Algor. 2018, 78, 1019–1044. [Google Scholar]
- Buong, N.; Hoai, P.T. Iterative methods for zeros of a monotone variational inclusion in Hilbert spaces. Calcolo 2018, 55, 7. [Google Scholar] [CrossRef]
- E Jeremiah Nkwegu, Z.; Chinedu, I. Iterative Approximation of Solution of Split Variational Inclusion Problem. Filomat 2018, 32, 2921–2932. [Google Scholar]
- Zhang, C.; Wang, Y. Proximal algorithm for solving monotone variational inclusion. Optimization 2018, 67, 1197–1209. [Google Scholar] [CrossRef]
- Ceng, L.C.; Guu, S.M.; Yao, J.C. Hybrid viscosity CQ method for finding a common solution of a variational inequality, a general system of variational inequalities, and a fixed point problem. Fixed Point Theory Appl. 2013, 2013, 313. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, R.; Xu, H.K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Prashanta, M.; Chandal, N. On inertial proximal algorithm for split variational inclusion problems. Optimization 2018, 67, 1701–1716. [Google Scholar]
- Zhao, X.P.; Sahu, D.R.; Wen, C.F. Iterative methods for system of variational inclusions involving accretive operators and applications. Fixed Point Theory 2018, 19, 801–822. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics 2019, 1, 61. [Google Scholar] [CrossRef]
- He, X.F.; Lou, J.; He, Z. Iterative methods for solving variational inclusions in Banach spaces. J. Comput. Appl. Math. 2007, 203, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.S.; Wen, C.F.; Yao, J.C. A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Matematicas 2019, 113, 729–747. [Google Scholar] [CrossRef]
- Zegeye, H.; Shahzad, N.; Yao, Y.H. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces. Optimization 2015, 64, 453–471. [Google Scholar] [CrossRef]
- Thakur, B.-S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.-L.; Cho, Y.-J.; Zhong, L.-L.; Rassias, T.-M. Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 2018, 7, 687–704. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.C.; Yao, J.C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.-L.; Cho, Y.-J.; Rassias, T.-M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Ceng, L.C.; Ansari, Q.H.; Yao, J.C. Relaxed extragradient iterative methods for variational inequalities. Appl. Math. Comput. 2011, 218, 1112–1123. [Google Scholar] [CrossRef]
- Yao, Y.H.; Postolache, M.; Liou, Y.C.; Yao, Z.S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Lan, H.Y.; Cho, Y.J.; Verma, R.U. Nonlinear relaxed cocoercive variational inclusions involving (A, η)-accretive mappings in Banach spaces. Comput. Math. Appl. 2006, 51, 1529–1538. [Google Scholar] [CrossRef]
- Xiong, T.J.; Lan, H.Y. On general system of generalized quasi-variational-like inclusions with maximal eta-monotone mappings in Hilbert spaces. J. Comput. Anal. Appl. 2015, 18, 506–514. [Google Scholar]
- Qin, X.; Chang, S.S.; Cho, Y.J.; Kang, S.M. Approximation of solutions to a system of variational inclusions in Banach spaces. J. Inequal. Appl. 2010, 2010, 916806. [Google Scholar] [CrossRef]
- Jung, J.S. Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces. Nonlinear Anal. 2010, 72, 449–459. [Google Scholar] [CrossRef]
- Yao, Y.H.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
- Zhou, H. Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 2008, 69, 3160–3173. [Google Scholar] [CrossRef]
- Zhao, X.P.; Ng, K.F.; Li, C.; Yao, J.C. Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 2018, 78, 613–641. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.C.; Liou, Y.C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Liou, Y.C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optim. 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Zhang, S.S.; Lee Joseph, H.W.; Chan, C.K. Algorithms of common solutions for quasi variational inclusion and fixed point problems. Appl. Math. Mechan. 2008, 29, 571–581. [Google Scholar] [CrossRef]
- Peng, J.W.; Wang, Y.; Shyu, D.S.; Yao, J.C. Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems. J. Inequal. Appl. 2008, 2008, 720371. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceng, L.-C.; Postolache, M.; Yao, Y. Iterative Algorithms for a System of Variational Inclusions in Banach Spaces. Symmetry 2019, 11, 811. https://doi.org/10.3390/sym11060811
Ceng L-C, Postolache M, Yao Y. Iterative Algorithms for a System of Variational Inclusions in Banach Spaces. Symmetry. 2019; 11(6):811. https://doi.org/10.3390/sym11060811
Chicago/Turabian StyleCeng, Lu-Chuan, Mihai Postolache, and Yonghong Yao. 2019. "Iterative Algorithms for a System of Variational Inclusions in Banach Spaces" Symmetry 11, no. 6: 811. https://doi.org/10.3390/sym11060811
APA StyleCeng, L. -C., Postolache, M., & Yao, Y. (2019). Iterative Algorithms for a System of Variational Inclusions in Banach Spaces. Symmetry, 11(6), 811. https://doi.org/10.3390/sym11060811