Algebraic Numbers as Product of Powers of Transcendental Numbers
Abstract
:1. Introduction
2. Proof of Theorem 2
2.1. Auxiliary Results
2.2. The Proof
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdös, P.; Dudley, U. Some remarks and problems in number theory related to the work of Euler. Math. Mag. 1983, 56, 292–298. [Google Scholar] [CrossRef]
- Hermite, C. Sur la fonction exponentielle. C. R. Acad. Sci. Paris I 1873, 77, 18–24. [Google Scholar]
- Lindemann, F. Über die Zahl π. Math. Ann. 1882, 20, 213–225. [Google Scholar] [CrossRef]
- Marques, D. On the arithmetic nature of hypertranscendental functions at complex points. Expo. Math. 2011, 29, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Baker, A. Transcendental Number Theory; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Bundschuh, P.; Waldschmidt, M. Irrationality results for theta-functions by Gel’fond–Schneider method. Acta Aritmetica 1989, 53, 289–307. [Google Scholar]
- Srivastava, H.M.; Araci, S.; Khan, W.A.; Acikgoz, M. A Note on the Truncated-Exponential Based Apostol-Type Polynomials. Symmetry 2019, 11, 538. [Google Scholar] [CrossRef]
- Waldschmidt, M. Auxiliary functions in transcendental number theory. Ramanujan J. 2009, 20, 341–373. [Google Scholar] [CrossRef] [Green Version]
- Sondow, J.; Marques, D. Algebraic and transcendental solutions of some exponential equations. Ann. Math. Inform. 2010, 37, 151–164. [Google Scholar]
- Marques, D. Algebraic numbers of the form P(T)Q(T), with T transcendental. Elem. Math. 2010, 65, 78–80. [Google Scholar] [CrossRef]
- Jensen, C.U.; Marques, D. Some field theoretic properties and an application concerning transcendental numbers. J. Algebra Appl. 2010, 9, 493–500. [Google Scholar] [CrossRef]
Value of x | Class of Numbers | Value of y | Class of Numbers | Power | Class of Numbers |
---|---|---|---|---|---|
2 | algebraic | transcendental | 3 | algebraic | |
2 | algebraic | transcendental | transcendental | ||
transcendental | transcendental | −1 | algebraic | ||
e | transcendental | transcendental | transcendental | ||
transcendental | algebraic | 4 | algebraic | ||
transcendental | algebraic | transcendental |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trojovský, P. Algebraic Numbers as Product of Powers of Transcendental Numbers. Symmetry 2019, 11, 887. https://doi.org/10.3390/sym11070887
Trojovský P. Algebraic Numbers as Product of Powers of Transcendental Numbers. Symmetry. 2019; 11(7):887. https://doi.org/10.3390/sym11070887
Chicago/Turabian StyleTrojovský, Pavel. 2019. "Algebraic Numbers as Product of Powers of Transcendental Numbers" Symmetry 11, no. 7: 887. https://doi.org/10.3390/sym11070887
APA StyleTrojovský, P. (2019). Algebraic Numbers as Product of Powers of Transcendental Numbers. Symmetry, 11(7), 887. https://doi.org/10.3390/sym11070887