On Some Formulas for Kaprekar Constants
Abstract
:- 2.1 A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
- 2.2 A Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
- 2.3 A Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
- 2.4 A Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
- 3.1 Some Formulas for All n-Digit Regular Kaprekar Constants with Specified n . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
- 3.2 Some Observations on νreg(b,n) with Specified n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
- References 31
1. Introduction
n | 2 | 3 | 4 | 5 | 6 | 7 |
011 | 0111 | 01111 | 011111 | 0111111 | ||
1001 | 10101 | 101101 | 1011101 | |||
110001 | 1101001 | |||||
3 | − | − | − | 20211 | − | 2202101 |
4 | − | − | 213312 | 3203211 | ||
310221 | ||||||
330201 | ||||||
5 | − | 3032 | − | − | − | |
6 | − | − | 325523 | − | ||
420432 | ||||||
7 | − | − | − | − | − | − |
8 | − | − | 437734 | |||
640632 | ||||||
9 | − | − | − | − | − | |
10 | − | − | 549945 | − | ||
631764 | ||||||
11 | − | − | − | − | − | |
12 | − | − | ||||
13 | − | − | − | − | − | |
14 | − | − | − | |||
15 | − | − | − | − |
b | ||||||||||||||||||
2 | 1 | 1 | 0 | 1 | 0 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 3 | 0 | 3 | 3 | 0 | 3 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
4 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 1 |
5 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 | 1 | 2 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 1 | 1 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 |
11 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
14 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
82 | |
10 | |
2. Proofs of Theorems and Corollaries in the Introduction
2.1. A Proof of Theorem 1
2.2. A Proof of Corollary 1
2.3. A Proof of Theorem 2
2.4. A Proof of Corollary 2
3. On n-Digit Regular Kaprekar Constants with Specified n
3.1. Some Formulas for All n-Digit Regular Kaprekar Constants with Specified n
3.2. Some Observations on with Specified n
- where the sets , , and are defined as:
- where the sets , , , and are defined as:
- .
- , where the symbol m in the sums stands for positive integers.
- .
b | |
⋮ | |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Errata of [1]
- p. 263, ℓ. 32, and → and
- p. 266, ℓ.7, 14, 16, 18, 19, 20, 21, 23, 24:
- p. 266, ℓ.16:
- p. 266, ℓ.14, 19:
- p. 266, ℓ.21:
- p. 266, ℓ.24:
- p. 267, ℓ.2, 3:
- p. 269, ℓ.11: and →; n is odd and
- p. 269, ℓ.12:
- p.280, ℓ.16: Delete the sentence “A.L. Ludington, A bound on Kaprekar
- constants, J. Reine Angew. Math. 310 196–203.”
References
- Yamagami, A. On 2-adic Kaprekar constants and 2-digit Kaprekar distances. J. Number Theory 2018, 185, 257–280. [Google Scholar] [CrossRef]
- Kaprekar, D.R. Another solitaire game. Scr. Math. 1949, 15, 244–245. [Google Scholar]
- Kaprekar, D.R. An interesting property of the number 6174. Scr. Math. 1955, 21, 304. [Google Scholar]
- Young, A.L. A variation on the two-digit Kaprekar routine. Fibonacci Q. 1993, 31, 138–145. [Google Scholar]
- Eldridge, K.E.; Sagong, S. The determination of Kaprekar convergence and loop convergence of all three-digit numbers. Am. Math. Mon. 1988, 95, 105–112. [Google Scholar] [CrossRef]
- Hasse, H.; Prichett, G.D. The determination of all four-digit Kaprekar constants. J. Reine Angew. Math. 1978, 299/300, 113–124. [Google Scholar]
- Prichett, G.D. Terminating cycles for iterated difference values of five digit integers. J. Reine Angew. Math. 1978, 303/304, 379–388. [Google Scholar]
- Yamagami, A.; Matsui, Y. On 3-adic Kaprekar loops. JP J. Algebra Number Theory Appl. 2018, 40, 957–1028. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamagami, A.; Matsui, Y. On Some Formulas for Kaprekar Constants. Symmetry 2019, 11, 885. https://doi.org/10.3390/sym11070885
Yamagami A, Matsui Y. On Some Formulas for Kaprekar Constants. Symmetry. 2019; 11(7):885. https://doi.org/10.3390/sym11070885
Chicago/Turabian StyleYamagami, Atsushi, and Yūki Matsui. 2019. "On Some Formulas for Kaprekar Constants" Symmetry 11, no. 7: 885. https://doi.org/10.3390/sym11070885
APA StyleYamagami, A., & Matsui, Y. (2019). On Some Formulas for Kaprekar Constants. Symmetry, 11(7), 885. https://doi.org/10.3390/sym11070885