Common Fixed Point Results of Set Valued Maps for Aφ-Contraction and Generalized ϕ-Type Weak Contraction
Abstract
:1. Introduction
2. Preliminaries
- 1.
- implies ;
- 2.
- as for each ;
- 3.
- converges for each .
- 1.
- α is continuous on (with respect to the usual metric).
- 2.
- if or or for all , then for some .
3. Main Results
- 1.
- The function α is continuous on (with respect to the usual metric).
- 2.
- There exists a strong comparison function φ such that, for each for which or or , the inequality holds.
- 1.
- and have the common property ;
- 2.
- there exist some such that, for each
- 3.
- for and for .
- 1.
- and have the common property ;
- 2.
- there exist some such that for each
- 3.
- for .
- 1.
- and have the common property ;
- 2.
- there exist some such that for each
- 3.
- for and for .
- 1.
- and have the common property ;
- 2.
- for each with
- 3.
- for and for .
- 1.
- and have the common property ;
- 2.
- for each with ,
- 3.
- for .
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Markin, J.T. A fixed point theorem for set- valued mappings. Bull. Am. Math. Soc. 1968, 74, 639–640. [Google Scholar] [CrossRef]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Assad, N.A.; Kirk, W.A. Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 1972, 43, 553–561. [Google Scholar] [CrossRef]
- Berinde, M.; Berinde, V. On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 2007, 326, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Chaipunya, P.; Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. 2012, 2012, 14. [Google Scholar] [CrossRef]
- Ćirić, L. Fixed point theorems for multivalued contractions in complete metric spaces. J. Math. Anal. Appl. 2008, 348, 499–507. [Google Scholar] [CrossRef]
- Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 1995, 192, 655–666. [Google Scholar] [CrossRef]
- Dag, H.; Minak, G.; Altun, I. Some fixed point results for multivalued F-contractions on quasi metric spaces. RACSAM 2017, 111, 177. [Google Scholar] [CrossRef]
- Debnath, P.; Choudhury, B.S.; Neog, M. Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph. Fixed Point Theory Appl. 2017, 5. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 2006, 317, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Kamran, T. Mizoguchi-Takahashi’s type fixed point theorem. Comput. Math. Appl. 2009, 57, 507–511. [Google Scholar] [CrossRef]
- Klim, D.; Wardowski, D. Fixed point theorems for set valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef]
- Lin, L.J.; Wang, S.U. Common fixed point theorems for a finite family of discontinuous and noncommutative maps. Fixed Point Theory Appl. 2011, 211, 847170. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems formultivaluedmappings on completemetric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef]
- Neog, M.; Debnath, P.; Radenović, S. New extension of some common fixed point theorems in complete metric spaces. Fixed Point Theory 2019, 20, 567–580. [Google Scholar]
- Abdou, A.A.N. Common fixed point results for multi-valued mappings with some examples. J. Nonlinear Sci. Appl. 2016, 9, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D. Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87, 109–116. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D. Fixed point theory for generalized contractions on spaces with two metrics. J. Math. Anal. Appl. 2000, 248, 402–414. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Sintunavarat, W.; Kumam, P. Coupled coincidence point and common coupled fixed point theorems lacking the mixed monotone property. Fixed Point Theory Appl. 2013, 22, 1–20. [Google Scholar] [CrossRef]
- Debnath, P.; Neog, M.; Radenović, S. New extension of some fixed point results in complete metric spaces. Tbilisi Math. J. 2018, 10, 201–210. [Google Scholar] [CrossRef]
- Ding, H.S.; Kadelburg, Z.; Nashine, H.K. Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces. Fixed Point Theory Appl. 2012, 85. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, L.; Chen, X.; Zhang, C. On stable perturbations of the generalized Drazin inverses of closed linear operators in Banach spaces. Abstr. Appl. Anal. 2012, 2012, 12. [Google Scholar] [CrossRef]
- Khan, M.S.; Cho, Y.J.; Park, W.T.; Mumtaz, T. Coincidence and common fixed points of hybrid contractions. Fixed Point Theory Appl. 1993, 55, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, X.; Ume, J.S.; Kang, S.M. Common fixed point theorems for four mappings satisfying psi-weakly contractive conditions. Fixed Point Theory Appl. 2015, 20. [Google Scholar] [CrossRef]
- Mustafa, Z.; Jaradat, M.M.M.; Ansari, A.H.; Popović, B.Z.; Jaradat, H.M. C-class functions with new approach on coincidence point results for generalized (ψ,φ)-weakly contractions in ordered b-metric spaces. SpringerPlus 2016, 5, 802. [Google Scholar] [CrossRef] [PubMed]
- Sintunavarat, W.; Kumam, P. Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition. Appl. Math. Lett. 2009, 22, 1877–1881. [Google Scholar] [CrossRef]
- Sessa, S. On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. 1982, 32, 149–153. [Google Scholar]
- Jungck, G.; Rhoades, B.E. Fixed point for set valued functions without continuity. Indian J. Pure Appl. Math. 1998, 29, 227–238. [Google Scholar]
- Jachymski, J. Equivalence of some contractivity properties over metrical structures. Proc. Am. Math. Soc. 1997, 125, 2327–2335. [Google Scholar] [CrossRef]
- Jachymski, J.; Jozwik, I. Nonlinear contractive conditions: A comparison and related problems, fixed point theory and its applications. Pol. Acad. Sci. 2007, 77, 123–146. [Google Scholar]
- Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 2011, 74, 768–774. [Google Scholar] [CrossRef]
- Aamri, M.; Moutawakil, D.E. Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl. 2002, 270, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Kamran, T. Coincidence and fixed points for hybrid strict contractions. J. Math. Anal. Appl. 2004, 299, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, J.; Li, Z. Common fixed points of single valued and multivalued maps. Int. J. Math. Math. Sci. 2005, 19, 3045–3055. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y. Fixed point theory for generalized φ-weak contractions. Appl. Math. Lett. 2009, 22, 75–78. [Google Scholar] [CrossRef]
- Rus, I.A.; Petrusel, A.; Petrusel, G. Fixed Point Theory; Cluj University Press: Cluj-Napoca, Romania, 2008. [Google Scholar]
- Akram, M.; Zafar, A.A.; Siddiqui, A.A. A general class of contractions: A-contractions. Novi Sad J. Math. 2008, 38, 25–33. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neog, M.; Jaradat, M.M.M.; Debnath, P. Common Fixed Point Results of Set Valued Maps for Aφ-Contraction and Generalized ϕ-Type Weak Contraction. Symmetry 2019, 11, 894. https://doi.org/10.3390/sym11070894
Neog M, Jaradat MMM, Debnath P. Common Fixed Point Results of Set Valued Maps for Aφ-Contraction and Generalized ϕ-Type Weak Contraction. Symmetry. 2019; 11(7):894. https://doi.org/10.3390/sym11070894
Chicago/Turabian StyleNeog, Murchana, Mohammed M. M. Jaradat, and Pradip Debnath. 2019. "Common Fixed Point Results of Set Valued Maps for Aφ-Contraction and Generalized ϕ-Type Weak Contraction" Symmetry 11, no. 7: 894. https://doi.org/10.3390/sym11070894
APA StyleNeog, M., Jaradat, M. M. M., & Debnath, P. (2019). Common Fixed Point Results of Set Valued Maps for Aφ-Contraction and Generalized ϕ-Type Weak Contraction. Symmetry, 11(7), 894. https://doi.org/10.3390/sym11070894