Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
Abstract
:1. Introduction
2. Background Materials
- (a)
- is compact (X is relatively compact), where denotes the closure of X,
- (b)
- nonsingularity: α is equal to zero on every element set,
- (c)
- , where is the convex hull of X,
- (d)
- monotonicity: ,
- (e)
- algebraic semi-additively: , where ,
- (f)
- semi-homogenicity: , , where ,
- (g)
- semi-additivity: .
- (h)
- invariance under translation: for any .
- (a)
- whenever ;
- (b)
- is continuous, and is a compact subset of E;
- (c)
- is a contraction mapping (i.e., for some and for all ). Then, there exist such that .
3. Main Result
3.1. Existence Result Via Krasnoselskii’s Fixed Point Theorem
3.2. Existence Result via Darbo’s Fixed Point Theorem
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Macel Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
- Rezapour, S.; Hedayati, V. On a Caputo fractional differential inclusion with integral boundary condition for convex-compact and nonconvex-compact valued multifunctions. Kragujev. J. Math. 2017, 41, 143–158. [Google Scholar] [CrossRef]
- Rezapour, S.; Shabibi, M. A singular fractional differential equation with Riemann–Liouville integral boundary condition. J. Adv. Math. Stud. 2015, 8, 80–88. [Google Scholar]
- Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. J. Adv. Math. Stud. 2019. [Google Scholar] [CrossRef]
- Baleanu, D.; Mousalou, A.; Rezapour, S. A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative. Adv. Differ. Equ. 2017. [Google Scholar] [CrossRef]
- Han, Z.; Lu, H.; Zhang, C. Positive solutions for eigenvalue problems of fractional differential equations with generalized P-Laplacian. Appl. Math. Comput. 2014, 257, 526–536. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Sun, Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Appl. Math. Comput. 2014, 226, 708–718. [Google Scholar] [CrossRef]
- Marasi, H.R.; Afshari, H.; Zhai, C.B. Some existence and uniqueness results for nonlinear fractional partial differential equations. Rocky Mt. J. Math. 2017, 47, 571–585. [Google Scholar] [CrossRef]
- Sun, Y. Positive solutions of Sturm-Liouville boundary value problems for singular nonlinear second-order impulsive integro-differential equation in Banach spaces. Bound. Value Probl. 2012, 2012, 86. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Zhang, J. Positive solutions for boundary value problems of nonlinear fractional differential equations. Nonlinear Anal. 2009, 71, 5545–5550. [Google Scholar] [CrossRef]
- Chen, T.; Liu, W.; Hu, Z. A boundary value problem for fractional differential equation with P-Laplacian operator at resonance. Nonlinear Anal. 2012, 75, 3210–3217. [Google Scholar] [CrossRef]
- Kosmatov, N. Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Anal. 2009, 70, 2521–2529. [Google Scholar] [CrossRef]
- Deng, J.; Ma, L. Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 2010, 23, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Deng, Z. Existence of solutions of initial value problems of nonlinear fractional differential equations. Appl. Math. Lett. 2014, 32, 6–12. [Google Scholar] [CrossRef]
- Sathiyanathan, K.; Krishnavent, V. Nonlinear Implicit Caputo Fractional Differential Equation with Integral Boundary Conditions in Banach Space. Glob. J. Pure Appl. Math. 2017, 13, 3895–3907. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Nonlocal Hadamard fractional integral conditions for nonlinear Riemann–Liouville fractional differential equations. Bound. Value Probl. 2014, 253. [Google Scholar] [CrossRef]
- Banas, J.; Olszowy, L. Measures of noncompactness related to monotonicity. Comment. Math. 2001, 41, 13–23. [Google Scholar]
- Ahmad, B.; Alsacdi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations Inclusions and Inequalities; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Akhmerov, K.K.; Kamenskii, M.I.; Potapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measures of Non Compactness and Condensing Operators; Brikhauser Verlag: Basel, Switzerland, 1992. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisut, P.; Kumam, P.; Ahmed, I.; Sitthithakerngkiet, K. Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems. Symmetry 2019, 11, 829. https://doi.org/10.3390/sym11060829
Borisut P, Kumam P, Ahmed I, Sitthithakerngkiet K. Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems. Symmetry. 2019; 11(6):829. https://doi.org/10.3390/sym11060829
Chicago/Turabian StyleBorisut, Piyachat, Poom Kumam, Idris Ahmed, and Kanokwan Sitthithakerngkiet. 2019. "Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems" Symmetry 11, no. 6: 829. https://doi.org/10.3390/sym11060829
APA StyleBorisut, P., Kumam, P., Ahmed, I., & Sitthithakerngkiet, K. (2019). Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems. Symmetry, 11(6), 829. https://doi.org/10.3390/sym11060829