Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks
Abstract
:1. Introduction
2. Non-Linear Programming Formulation
Objective function:
Set of constraints:
Convexity Test
3. Second-Order Cone Programming Formulation
4. Graphical Example
5. Test Systems and Simulation Results
5.1. Test System Configurations
5.2. Numerical Validation
- 🗸
- The HVDC test feeder with its meshed structure maintains voltages higher than p.u. until the voltage collapse scenario. Please note that node 4 presents the lower voltage profile with p.u., which is a radial extension of this HVDC system.
- 🗸
- The voltage collapse in the MVDC test feeder is evident long after node 57 and onward. This situation occurs in this part (node 57 and onward) of the test feeder since the total load is more significant than regarding routes. Voltage collapse occurs when the maximum voltage drop is p.u. at node 69.
- 🗸
- In both test systems, the voltage collapse occurs when voltages are lower than p.u; while the total load consumptions increase at least three times. This behavior implies that the power system protection disconnects this system before the voltage collapse occurs because of the high currents flowing through the branches.
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids–Part I: A review of control strategies and stabilization techniques. IEEE Trans. Power Electron. 2016, 31, 4876–4891. [Google Scholar]
- Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153. [Google Scholar] [CrossRef]
- Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [Google Scholar]
- Gan, L.; Low, S.H. Optimal power flow in direct current networks. IEEE Trans. Power Syst. 2014, 29, 2892–2904. [Google Scholar] [CrossRef]
- Rouzbehi, K.; Miranian, A.; Candela, J.I.; Luna, A.; Rodriguez, P. A Generalized Voltage Droop Strategy for Control of Multiterminal DC Grids. IEEE Trans. Ind. Appl. 2015, 51, 607–618. [Google Scholar] [CrossRef]
- Rouzbehi, K.; Miranian, A.; Luna, A.; Rodriguez, P. DC Voltage Control and Power Sharing in Multiterminal DC Grids Based on Optimal DC Power Flow and Voltage-Droop Strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1171–1180. [Google Scholar] [CrossRef]
- Hamad, A.A.; El-Saadany, E.F. Multi-agent supervisory control for optimal economic dispatch in DC microgrids. Sustain. Cities Soc. 2016, 27, 129–136. [Google Scholar] [CrossRef]
- Barabanov, N.; Ortega, R.; Griñó, R.; Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I 2016, 63, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II 2019, 66, 642–646. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 2018, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Gil-González, W.; Garrido, V.M. Voltage Stability Margin in DC Grids with CPLs: A Recursive Newton–Raphson Approximation. IEEE Trans. Circuits Syst. II 2019, 67, 300–304. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Workshop on Engineering Applications; Chapter Applied Computer Sciences in Engineering; Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y., Eds.; Springer: Berlin, Germany, 2019; Volume 1052, pp. 552–564. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chen, X.; Wu, Q.; Zhou, Q. Second-order conic programming model for load restoration considering uncertainty of load increment based on information gap decision theory. Int. J. Electr. Power Energy Syst. 2019, 105, 151–158. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
- Lavaei, J.; Low, S.H. Zero Duality Gap in Optimal Power Flow Problem. IEEE Trans. Power Syst. 2012, 27, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Hindi, H. A tutorial on convex optimization. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 4, pp. 3252–3265. [Google Scholar]
- Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math Program 2003, 95, 3–51. [Google Scholar] [CrossRef]
- Yuan, Z.; Hesamzadeh, M.R. Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. J. Mod. Power Syst. Clean Energy 2018, 7, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.Q.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 2006, 24, 1426–1438. [Google Scholar] [CrossRef]
Trajectory | Collapse Point | z [p.u.] | ||
---|---|---|---|---|
O–A | 15.4021 | 0 | A (0.4802,0.4265) | 3.4304 |
O–B | 5.5319 | 5.5319 | B (0.6776,0.4151) | 2.2862 |
O–C | 0 | 7.4076 | C (0.7613,0.4534) | 1.4611 |
Test System | NR-DJM | IP-NLP | SDP | SOCP |
---|---|---|---|---|
HVDC | 5.6588 | 5.6588 | 5.6588 | 5.6588 |
MVDC | 3.0200 | 3.0200 | 3.0067 | 3.0200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; Gil-González, W.; Molina-Cabrera, A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry 2020, 12, 1587. https://doi.org/10.3390/sym12101587
Montoya OD, Gil-González W, Molina-Cabrera A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry. 2020; 12(10):1587. https://doi.org/10.3390/sym12101587
Chicago/Turabian StyleMontoya, Oscar Danilo, Walter Gil-González, and Alexander Molina-Cabrera. 2020. "Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks" Symmetry 12, no. 10: 1587. https://doi.org/10.3390/sym12101587
APA StyleMontoya, O. D., Gil-González, W., & Molina-Cabrera, A. (2020). Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry, 12(10), 1587. https://doi.org/10.3390/sym12101587