Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay
Abstract
:1. Introduction
2. Theoretical Framework and Analysis Results of All Possible Triangle Singularities
3. Detailed Analysis of the Amplitudes for the Diagram with Loop
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, J.J.; Molina, R.; Oset, E.; Zou, B.S. Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV. Phys. Rev. Lett. 2010, 105, 232001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaij, R. Observation of J/ψp Resonances Consistent with Pentaquark States in → J/ψK−p Decays. Phys. Rev. Lett. 2015, 115, 072001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaij, R. Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+. Phys. Rev. Lett. 2019, 122, 222001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.W.; Nieves, J.; Oset, E. Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry. Phys. Lett. 2019, B799, 135051. [Google Scholar] [CrossRef]
- Xiao, C.W.; Nieves, J.; Oset, E. Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. 2013, D88, 056012. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Meng, L.; Zhu, S.L. Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory. Phys. Rev. 2020, D101, 034018. [Google Scholar] [CrossRef] [Green Version]
- Irie, Y.; Oka, M.; Yasui, S. Flavor-singlet hidden charm pentaquark. Phys. Rev. 2018, D97, 034006. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; He, J.; Liu, X. Possible strange hidden-charm pentaquarks from and interactions. Chin. Phys. 2017, C41, 103105. [Google Scholar] [CrossRef]
- Shen, C.W.; Wu, J.J.; Zou, B.S. Decay behaviors of possible states in hadronic molecule pictures. Phys. Rev. 2019, D100, 056006. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.X.; Wang, E.; Xie, J.J.; Geng, L.S.; Oset, E. The Λb → J/ψK0Λ reaction and a hidden-charm pentaquark state with strangeness. Phys. Rev. 2016, D93, 094009. [Google Scholar] [CrossRef] [Green Version]
- Feijoo, A.; Magas, V.K.; Ramos, A.; Oset, E. A hidden-charm S = −1 pentaquark from the decay of Λb into J/ψ,ηΛ states. Eur. Phys. J. 2016, C76, 446. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Geng, L.S.; Liang, W.H.; Oset, E.; Wang, E.; Xie, J.J. Looking for a hidden-charm pentaquark state with strangeness S = −1 from decay into J/ψK−Λ. Phys. Rev. 2016, C93, 065203. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R. Observation of the → J/ψΛK− decay. Phys. Lett. 2017, B772, 265–273. [Google Scholar] [CrossRef]
- Coleman, S.; Norton, R.E. Singularities in the physical region. Nuovo Cim. 1965, 38, 438–442. [Google Scholar] [CrossRef]
- Karplus, R.; Sommerfield, C.M.; Wichmann, E.H. Spectral Representations in Perturbation Theory. 1. Vertex Function. Phys. Rev. 1958, 111, 1187–1190. [Google Scholar] [CrossRef]
- Landau, L.D. On analytic properties of vertex parts in quantum field theory. Nucl. Phys. 1960, 13, 181–192. [Google Scholar] [CrossRef]
- Bjorken, J.D. Experimental Tests of Quantum Electrodynamics and Spectral Representations of Green’s Functions in Perturbation Theory. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1959. [Google Scholar]
- Schmid, C. Final-State Interactions and the Simulation of Resonances. Phys. Rev. 1967, 154, 1363. [Google Scholar] [CrossRef]
- Wu, J.J.; Liu, X.H.; Zhao, Q.; Zou, B.S. The Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett. 2012, 108, 081803. [Google Scholar] [CrossRef] [Green Version]
- Aceti, F.; Liang, W.H.; Oset, E.; Wu, J.J.; Zou, B.S. Isospin breaking and f0(980)-a0(980) mixing in the η(1405) → π0f0(980) reaction. Phys. Rev. 2012, D86, 114007. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.G.; Wu, J.J.; Zhao, Q.; Zou, B.S. Understanding the property of η(1405/1475) in the J/ψ radiative decay. Phys. Rev. 2013, D87, 014023. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Hanhart, C.; Zhao, Q. Decoding the riddle of Y(4260) and Zc(3900). Phys. Rev. Lett. 2013, 111, 132003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Hanhart, C.; Zhao, Q. Systematic study of the singularity mechanism in heavy quarkonium decays. Phys. Lett. 2013, B725, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Mikhasenko, M.; Ketzer, B.; Sarantsev, A. Nature of the a1(1420). Phys. Rev. 2015, D91, 094015. [Google Scholar] [CrossRef] [Green Version]
- Achasov, N.N.; Kozhevnikov, A.A.; Shestakov, G.N. Isospin breaking decay η(1405) → f0(980)π0 → 3π. Phys. Rev. 2015, D92, 036003. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Oka, M.; Zhao, Q. Searching for observable effects induced by anomalous triangle singularities. Phys. Lett. 2016, B753, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Wang, Q.; Zhao, Q. Understanding the newly observed heavy pentaquark candidates. Phys. Lett. 2016, B757, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.K.; Meißner, U.G.; Wang, W.; Yang, Z. How to reveal the exotic nature of the Pc(4450). Phys. Rev. 2015, D92, 071502. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, A.P. Triangle Singularities and XYZ Quarkonium Peaks. Phys. Lett. 2015, B747, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.K.; Meißner, U.G.; Nieves, J.; Yang, Z. Remarks on the Pc structures and triangle singularities. Eur. Phys. J. 2016, A52, 318. [Google Scholar] [CrossRef] [Green Version]
- Bayar, M.; Aceti, F.; Guo, F.K.; Oset, E. A Discussion on Triangle Singularities in the Λb → J/ψK−p Reaction. Phys. Rev. 2016, D94, 074039. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Xie, J.J.; Liang, W.H.; Guo, F.K.; Oset, E. Role of a triangle singularity in the γp → K+Λ(1405) reaction. Phys. Rev. 2017, C95, 015205. [Google Scholar] [CrossRef] [Green Version]
- Pilloni, A.; Fernandez-Ramirez, C.; Jackura, A.; Mathieu, V.; Mikhasenko, M.; Nys, J.; Szczepaniak, A. Amplitude analysis and the nature of the Zc(3900). Phys. Lett. B 2017, 772, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.J.; Geng, L.S.; Oset, E. f2(1810) as a triangle singularity. Phys. Rev. 2017, D95, 034004. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, A.P. Dalitz plot distributions in presence of triangle singularities. Phys. Lett. 2016, B757, 61–64. [Google Scholar] [CrossRef]
- Roca, L.; Oset, E. Role of a triangle singularity in the πΔ decay of the N(1700)(3/2−). Phys. Rev. 2017, C95, 065211. [Google Scholar] [CrossRef] [Green Version]
- Debastiani, V.R.; Sakai, S.; Oset, E. Role of a triangle singularity in the πN(1535) contribution to γp → pπ0η. Phys. Rev. 2017, C96, 025201. [Google Scholar] [CrossRef] [Green Version]
- Samart, D.; Liang, W.; Oset, E. Triangle mechanisms in the build up and decay of the N*(1875). Phys. Rev. 2017, C96, 035202. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Oset, E.; Ramos, A. Triangle singularities in B− → K−π− and B− → K−π−. Eur. Phys. J. 2018, A54, 10. [Google Scholar] [CrossRef] [Green Version]
- Pavao, R.; Sakai, S.; Oset, E. Triangle singularities in B− → D*0π−π0η and B− → D*0π−π+π−. Eur. Phys. J. 2017, C77, 599. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.J.; Guo, F.K. Triangular singularity and a possible ϕp resonance in the → π0ϕp decay. Phys. Lett. 2017, B774, 108–113. [Google Scholar] [CrossRef]
- Bayar, M.; Pavao, R.; Sakai, S.; Oset, E. Role of the triangle singularity in Λ(1405) production in the π−p → K0πΣ and pp → pK+πΣ processes. Phys. Rev. 2018, C97, 035203. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.H.; Sakai, S.; Xie, J.J.; Oset, E. Triangle singularity enhancing isospin violation in → J/ψπ0f0(980). Chin. Phys. 2018, C42, 044101. [Google Scholar] [CrossRef]
- Oset, E.; Roca, L. Triangle singularity in τ → f1(1285)πντ decay. Phys. Lett. 2018, B782, 332–338. [Google Scholar] [CrossRef]
- Dai, L.R.; Pavao, R.; Sakai, S.; Oset, E. Anomalous enhancement of the isospin-violating Λ(1405) production by a triangle singularity in Λc → π+π0π0Σ0. Phys. Rev. 2018, D97, 116004. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.R.; Yu, Q.X.; Oset, E. Triangle singularity in τ− → ντπ−f0(980) (a0(980)) decays. Phys. Rev. 2019, D99, 016021. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.K. Novel Method for Precisely Measuring the X(3872) Mass. Phys. Rev. Lett. 2019, 122, 202002. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.H.; Chen, H.X.; Oset, E.; Wang, E. Triangle singularity in the J/ψ → K+K−f0(980)(a0(980)) decays. Eur. Phys. J. 2019, C79, 411. [Google Scholar] [CrossRef]
- Nakamura, S.X. Triangle singularities in → χc1K−π+ relevant to Z1(4050) and Z2(4250). Phys. Rev. 2019, D100, 011504. [Google Scholar] [CrossRef] [Green Version]
- Du, M.C.; Zhao, Q. Internal particle width effects on the triangle singularity mechanism in the study of the η(1405) and η(1475) puzzle. Phys. Rev. 2019, D100, 036005. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Li, G.; Xie, J.J.; Zhao, Q. Visible narrow cusp structure in → pK−π+ enhanced by triangle singularity. Phys. Rev. 2019, D100, 054006. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.J.; Sakai, S.; Guo, F.K.; Zou, B.S. Triangle singularities in J/ψ → ηπ0ϕ and π0π0ϕ. Phys. Rev. 2019, D100, 114010. [Google Scholar] [CrossRef] [Green Version]
- Braaten, E.; He, L.P.; Ingles, K. Triangle Singularity in the Production of X(3872) and a Photon in e+e− Annihilation. Phys. Rev. 2019, D100, 031501. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Oset, E.; Guo, F.K. Triangle singularity in the B− → K−π0X(3872) reaction and sensitivity to the X(3872) mass. Phys. Rev. 2020, D101, 054030. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S. Role of the triangle mechanism in the Λb → Λcπ−f0(980) reaction. Phys. Rev. 2020, D101, 074041. [Google Scholar] [CrossRef]
- Molina, R.; Oset, E. Triangle singularity in B− → K−X(3872); X → π0π+π− and the X(3872) mass. Eur. Phys. J. 2020, C80, 451. [Google Scholar] [CrossRef]
- Braaten, E.; He, L.P.; Ingles, K.; Jiang, J. Charm-meson triangle singularity in e+e− annihilation into D*0 + γ. Phys. Rev. D 2020, 101, 096020. [Google Scholar] [CrossRef]
- Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Azevedo, C.D.R.; Badelek, B.; et al. A Triangle Singularity as the Origin of the a1(1420). arXiv 2020, arXiv:2006.05342. [Google Scholar]
- Ortega, P.G.; Ruiz Arriola, E. On the precise measurement of the X(3872) mass and its counting rate. arXiv 2020, arXiv:2007.11608. [Google Scholar]
- Guo, F.K.; Liu, X.H.; Sakai, S. Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 2020, 112, 103757. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Jing, H.J.; Guo, F.K. Decays of Pc into J/ψN and ηcN with heavy quark spin symmetry. Phys. Rev. D 2019, 100, 074007. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Chen, W.; Liu, X.; Steele, T.G.; Zhu, S.L. Towards exotic hidden-charm pentaquarks in QCD. Phys. Rev. Lett. 2015, 115, 172001. [Google Scholar] [CrossRef] [PubMed]
- Roca, L.; Nieves, J.; Oset, E. LHCb pentaquark as a Σc- molecular state. Phys. Rev. 2015, D92, 094003. [Google Scholar] [CrossRef] [Green Version]
- He, J. and Σc interactions and the LHCb hidden-charmed pentaquarks. Phys. Lett. 2016, B753, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Shen, C.W.; Guo, F.K.; Zou, B.S. Decay behaviors of the Pc hadronic molecules. Phys. Rev. 2017, D95, 114017. [Google Scholar] [CrossRef] [Green Version]
- He, J. Understanding spin parity of Pc(4450) and Y(4274) in a hadronic molecular state picture. Phys. Rev. 2017, D95, 074004. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Cui, E.L.; Chen, W.; Liu, X.; Steele, T.G.; Zhu, S.L. QCD sum rule study of hidden-charm pentaquarks. Eur. Phys. J. 2016, C76, 572. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.B.; Chen, H.X.; Chen, W.; Li, X.B.; Yao, X.Q.; Zhu, S.L. Revisiting hidden-charm pentaquarks from QCD sum rules. Chin. Phys. 2019, C43, 034104. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Brodzicka, J. Observation of a new DsJ meson in B+ → D0K+ decays. Phys. Rev. Lett. 2008, 100, 092001. [Google Scholar] [CrossRef] [Green Version]
- Lees, J. Dalitz plot analyses of B0 → D−D0K+ and B+ → D0K+ decays. Phys. Rev. D 2015, 91, 052002. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; De Cian, M.; De Miranda, J.M.; De Paula, L.; De Silva, W. Observation of overlapping spin-1 and spin-3 K− resonances at mass 2.86 GeV/c2. Phys. Rev. Lett. 2014, 113, 162001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, B.S.; Hussain, F. Covariant L-S scheme for the effective N*NM couplings. Phys. Rev. 2003, C67, 015204. [Google Scholar] [CrossRef] [Green Version]
- Alitti, J.; Barnes, V.E.; Flaminio, E.; Metzger, W.; Radojičić, D.; Rau, R.R.; Richardson, C.R.; Samios, N.P.; Bassano, D.; Goldberg, M.; et al. Strangeness S = −2 baryon resonance. Phys. Rev. Lett. 1969, 22, 79–82. [Google Scholar] [CrossRef]
- Hemingway, R.J.; Armenteros, R.; Berge, J.P.; Diaz, J.; Gay, J.B.; Trepagnier, P.; Jongejans, B.; Massaro, G.G.G.; Voorthuis, H.; Heinen, P.M.; et al. Xi* (2030) Production in K− p Reactions at 4.2-GeV/c. Phys. Lett. 1977, 68B, 197. [Google Scholar] [CrossRef]
- Bartsch, J.; Bartsch, J.; Deutschmann, M.; Hermanns, M.; Keppel, E.; Speth, R.; Gensch, U.; Grote, C.; Pose, D.; Schiller, H.; et al. Evidence for a new xi resonance at 2500 mev in 10 gev/c k-minus p interactions. Phys. Lett. 1969, 28B, 439–442. [Google Scholar] [CrossRef]
No. | Position of Triangle Singularity (MeV) | ||
---|---|---|---|
1 | 4232 | ||
2 | 4546 | ||
3 | 4665 | ||
4 | 4628 | ||
5 | 4696 | ||
6 | 4680 | ||
7 | 4644 | ||
8 | 4730 | ||
9 | 4754 | ||
10 | 4797 | ||
11 | 4810 |
No. | Intermediate Particle 3 | Position of Triangle Singularity (MeV) | ||
---|---|---|---|---|
1 | 4838 | |||
2 | 4922 | |||
3 | 4957 | |||
4 | 4959 | |||
5 | 5089 | |||
6 | 4990 | |||
7 | 5149 |
S-wave | P-wave | |
S-wave | S-wave | |
S-wave | P-wave | |
S-wave | D-wave | |
P-wave | F-wave | |
P-wave | D-wave |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.-W.; Jing, H.-J.; Guo, F.-K.; Wu, J.-J. Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry 2020, 12, 1611. https://doi.org/10.3390/sym12101611
Shen C-W, Jing H-J, Guo F-K, Wu J-J. Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry. 2020; 12(10):1611. https://doi.org/10.3390/sym12101611
Chicago/Turabian StyleShen, Chao-Wei, Hao-Jie Jing, Feng-Kun Guo, and Jia-Jun Wu. 2020. "Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay" Symmetry 12, no. 10: 1611. https://doi.org/10.3390/sym12101611
APA StyleShen, C. -W., Jing, H. -J., Guo, F. -K., & Wu, J. -J. (2020). Exploring Possible Triangle Singularities in the Ξ b − → K − J / ψ Λ Decay. Symmetry, 12(10), 1611. https://doi.org/10.3390/sym12101611