A 4+1 Formalism for the Evolving Stueckelberg-Horwitz-Piron Metric
Abstract
:1. Introduction
1.1. Motivation: The Problem of Time
1.2. Stueckelberg-Horwitz-Piron (SHP) Theory
1.3. Organization of This Paper
2. Particle Mechanics
2.1. Particle Lagrangian in Standard GR
2.2. Particle Lagrangian in SHP GR
2.3. Equations of Motion
2.4. Mass-Energy-Momentum Tensor
2.5. Weak Field Approximation
3. Field Equations
3.1. Embedding and Foliation
3.2. Intrinsic and Extrinsic Geometry
3.3. Evolution of the Hypersurface
3.4. Decomposition of the Riemann Tensor
3.5. Decomposition of the Einstein Equation
3.6. Summary of Einstein System as Differential Equations
4. The ADM Hamiltonian Formulation
5. Perturbations to Schwarzschild Geometry
5.1. Constant Mass Source
5.2. Variable Mass Source
6. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Arnowitt, R.L.; Deser, S.; Misner, C.W. Republication of: The dynamics of general relativity. Gen. Relativ. Gravit. 2004, 40, 1997–2027. [Google Scholar] [CrossRef] [Green Version]
- Stueckelberg, E. La signification du temps propre en mécanique: Ondulatoire. Helv. Phys. Acta 1941, 14, 321–322. (In French) [Google Scholar]
- Stueckelberg, E. Remarque a propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta 1941, 14, 588–594. (In French) [Google Scholar]
- Horwitz, L.; Piron, C. Relativistic Dynamics. Helv. Phys. Acta 1973, 48, 316–326. [Google Scholar]
- Saad, D.; Horwitz, L.; Arshansky, R. Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics. Found. Phys. 1989, 19, 1125–1149. [Google Scholar] [CrossRef]
- Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Land, M.; Horwitz, L.P. Relativistic Classical Mechanics and Electrodynamics; Morgan and Claypool Publishers: San Rafae, CA, USA, 2020. [Google Scholar] [CrossRef]
- Horwitz, L.P. An Elementary Canonical Classical and Quantum Dynamics for General Relativity. J. Phys. Conf. Ser. 2019, 1239, 012014. [Google Scholar] [CrossRef]
- Horwitz, L.P. An elementary canonical classical and quantum dynamics for general relativity. Eur. Phys. J. Plus 2019, 134, 313. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons, Black Holes and Quantum Foam: A Life in Physics; W. W. Norton & Company: New York, NY, USA, 2000. [Google Scholar]
- Isham, C. Canonical Quantum Gravity and the Problem of Time; Technical Report Imperial/TP/91-92/25; Lectures at the NATO Summer School in Salamanca; Blackett Laboratory, Imperial College: London, UK, 1992. [Google Scholar]
- Kiefer, C. Space, Time, Matter in Quantum Gravity. In Hundred Years of Gauge Theory; De Bianchi, S., Kiefer, C., Eds.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Wheeler, J.A. Superspace and the nature of quantum geometrodynamics. In Topics in Nonlinear Physics; Zabusky Norman, J., Ed.; Springer: New York, NY, USA, 1969; pp. 615–724. [Google Scholar]
- Fock, V. Proper time in classical and quantum mechanics. Phys. Z. Sowjetunion 1937, 12, 404–425. [Google Scholar]
- Land, M.; Shnerb, N.; Horwitz, L. On Feynman’s approach to the foundations of gauge theory. J. Math. Phys. 1995, 36, 3263. [Google Scholar] [CrossRef] [Green Version]
- Land, M.; Horwitz, L. The Lorentz Force and Energy-Momentum for Off-Shell Electromagnetism. Found. Phys. Lett. 1991, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Land, M. Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics. J. Phys. Conf. Ser. 2015, 615, 012007. [Google Scholar] [CrossRef] [Green Version]
- Pitts, J.B.; Schieve, W.C. On Parametrized General Relativity. Found. Phys. 1998, 28, 1417–1424. [Google Scholar] [CrossRef]
- Pitts, J.B.; Schieve, W.C. Flat Spacetime Gravitation with a Preferred Foliation. Found. Phys. 2001, 31, 1083–1104. [Google Scholar] [CrossRef]
- Dirac, P. General Theory of Relativity; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Wald, R.M. General Relativity; Chicago Univ. Press: Chicago, IL, USA, 1984. [Google Scholar]
- Land, M. Mass-Energy-Momentum Radiation in Stueckelberg-Horwitz-Piron (SHP) Electrodynamics. J. Phys. Conf. Ser. 2019, 1239, 012005. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Land, M. Local metric with parameterized evolution. Astron. Nachrichten 2019, 340, 983–988. [Google Scholar] [CrossRef]
- Land, M.; Horwitz, L. Green’s functions for off-shell electromagnetism and spacelike correlations. Found. Phys. 1991, 21, 299–310. [Google Scholar] [CrossRef]
- Bertschinger, E. Hamiltonian Formulation of General Relativity; Technical Report Physics 8.962; Massachusetts Institute of Technology: Cambridge, MA, USA, 2002. [Google Scholar]
- Zilhão, M. New frontiers in Numerical Relativity. arXiv 2013, arXiv:gr-qc/1301.1509. [Google Scholar]
- Gourgoulhon, E. 3+1 Formalism and Bases of Numerical Relativity. arXiv 2007, arXiv:gr-qc/0703035. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity; Technical Report; Albert Einstein Center for Fundamental Physics, Universität Bern: Bern, Switzerland, 2020. [Google Scholar]
- Land, M. Speeds of light in Stueckelberg–Horwitz–Piron electrodynamics. J. Phys. Conf. Ser. 2017, 845, 012024. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Feynman, R. Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev. 1950, 80, 440–457. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Land, M. A 4+1 Formalism for the Evolving Stueckelberg-Horwitz-Piron Metric. Symmetry 2020, 12, 1721. https://doi.org/10.3390/sym12101721
Land M. A 4+1 Formalism for the Evolving Stueckelberg-Horwitz-Piron Metric. Symmetry. 2020; 12(10):1721. https://doi.org/10.3390/sym12101721
Chicago/Turabian StyleLand, Martin. 2020. "A 4+1 Formalism for the Evolving Stueckelberg-Horwitz-Piron Metric" Symmetry 12, no. 10: 1721. https://doi.org/10.3390/sym12101721
APA StyleLand, M. (2020). A 4+1 Formalism for the Evolving Stueckelberg-Horwitz-Piron Metric. Symmetry, 12(10), 1721. https://doi.org/10.3390/sym12101721