Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator
Abstract
:1. Introduction and Definitions
2. Auxiliary Lemmas
3. Main Results
4. Fekete–Szegö Problem
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Barbosu, D.; Acu, A.M.; Muraru, C.V. On certain GBS-Durrmeyer operators based on q-integers. Turk. J. Math. 2017, 41, 368–380. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca. 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Kamble, P.N.; Shrigan, M.G.; Srivastava, H.M. A novel subclass of univalent functions involving operators of fractional calculus. Int. J. Appl. Math. 2017, 30, 501–514. [Google Scholar]
- Arif, M.; Ahmad, B. New subfamily of meromorphic multivalent starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Ahmad, B.; Arif, A. New subfamily of meromorphic convex functions in circular domain involving q-operator. In. J. Anal. Appl. 2018, 16, 75–82. [Google Scholar]
- Arif, A.; Haq, M.; Liu, J.L. A subfamily of univalent functions associated with q-analogue of Noor integral operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef] [Green Version]
- Mahmmod, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Minda, D.A. Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Int. Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Ravichandran, V.; Darus, M.; Khan, M.H.; Subramanian, K.G. Fekete–Szegö inequality for Certain Class of Analytic Functions. Far East. J. Math. Anal. Appl. 2004, 1, 1–7. [Google Scholar]
- Ravichandran, V.; Gangadharan, A.; Darus, M. Fekete–Szegö inequality for certain class of Bazilevic functions. Far East J. Math. Sci. 2004, 15, 171–180. [Google Scholar]
- Ravichandran, V.; Bolcal, M.; Polotoglu, Y. Convex functions of complex order. Hacet. J. Math. Stat. 2005, 34, 9–15. [Google Scholar]
- Shanmugam, T.N.; Sivassubramanian, S.; Darus, M. On Certain Subclasses of a new class of analytic functions. Int. J. Pure Appl. Math. 2007, 28, 29–34. [Google Scholar]
- Shanmugam, T.N.; Sivassubramanian, S.; Darus, M. Fekete–Szegö inequality for certain class of Bazilevic functions. Int. Math. 2006, 34, 283–290. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Sokól, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mater. 1996, 19, 101–105. [Google Scholar]
- Sokól, J. Radius problem in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar]
- Halim, S.A.; Omar, R. Applications of certain functions associated with lemniscate Bernoulli. J. Indones. Math. Soc. 2012, 18, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Chu, N.E.; Ravichandran, V.; Kumar, S.S. First order differential subordination for functions associated with the lemniscate of Bernoulli. Taiwan. J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Sokól, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 2013, 65, 454–465. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Aldawish, I.; Darus, M. Starlikeness of q-differential operator involving quantum calculus. Korean J. Math. 2014, 22, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Matematički Vesnik 2013, 65, 454–465. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequalities 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ghaffar Khan, M.; Ahmad, B. Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator. Symmetry 2020, 12, 291. https://doi.org/10.3390/sym12020291
Shi L, Ghaffar Khan M, Ahmad B. Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator. Symmetry. 2020; 12(2):291. https://doi.org/10.3390/sym12020291
Chicago/Turabian StyleShi, Lei, Muhammad Ghaffar Khan, and Bakhtiar Ahmad. 2020. "Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator" Symmetry 12, no. 2: 291. https://doi.org/10.3390/sym12020291
APA StyleShi, L., Ghaffar Khan, M., & Ahmad, B. (2020). Some Geometric Properties of a Family of Analytic Functions Involving a Generalized q-Operator. Symmetry, 12(2), 291. https://doi.org/10.3390/sym12020291