Charged Particle Oscillations in Transient Plasmas Generated by Nanosecond Laser Ablation on Mg Target
Abstract
:1. Introduction
2. Experimental Setup
3. Langmuir Probe Measurements
4. Mathematical Model
4.1. Ablation Plasma as a Fractal Medium
4.2. Scale Covariant Derivative and Geodesics Equations
4.3. Ablation Plasma Behavior through a Special Tunneling Effect of Fractal Type
4.4. Mutual Conditionings of the Plasma Structures through Joint Invariant Functions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dijkkamp, D.; Venkatesan, T.; Wu, X.D.; Shaheen, S.A.; Jisrawi, N.; Min-Lee, Y.H.; McLean, W.L.; Croft, M. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 1987, 51, 619–621. [Google Scholar] [CrossRef]
- Bulai, G.; Trandafir, V.; Irimiciuc, S.A.; Ursu, L.; Focsa, C.; Gurlui, S. Influence of rare earth addition in cobalt ferrite thin films obtained by pulsed laser deposition. Ceram. Int. 2019, 45, 20165–20171. [Google Scholar] [CrossRef]
- Craciun, D.; Socol, G.; Stefan, N.; Dorcioman, G.; Hanna, M.; Taylor, C.R.; Lambers, E.; Craciun, V. Applied Surface Science The effect of deposition atmosphere on the chemical composition of TiN and ZrN thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2014, 302, 124–128. [Google Scholar] [CrossRef]
- Yang, Q.I.; Zhao, J.; Zhang, L.; Dolev, M.; Fried, A.D.; Marshall, A.F.; Risbud, S.H.; Kapitulnik, A. Pulsed laser deposition of high-quality thin films of the insulating ferromagnet EuS. Appl. Phys. Lett. 2014, 104, 082402. [Google Scholar] [CrossRef] [Green Version]
- Craciun, V.; Doina, C. Reactive pulsed laser deposition of TiN. Appl. Surf. Sci. 1992, 54, 75–77. [Google Scholar] [CrossRef]
- Dorcioman, G.; Socol, G.; Craciun, D.; Argibay, N.; Lambers, E.; Hanna, M.; Taylor, C.R.; Craciun, V. Applied Surface Science Wear tests of ZrC and ZrN thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2014, 306, 33–36. [Google Scholar] [CrossRef]
- Amoruso, S.; Bruzzese, R.; Velotta, R.; Spinelli, M.; Vitiello, M.; Wang, X. Characterization of LaMnO3 laser ablation in oxygen by ion probe and opticalemission spectroscopy. Appl. Surf. Sci. 2005, 248, 45–49. [Google Scholar] [CrossRef]
- Irimiciuc, S.; Bulai, G.; Agop, M.; Gurlui, S. Influence of laser-produced plasma parameters on the deposition process: In situ space- and time-resolved optical emission spectroscopy and fractal modeling approach. Appl. Phys. A 2018, 124, 1–14. [Google Scholar] [CrossRef]
- Aragón, C.; Aguilera, J.A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta Part B 2008, 63, 893–916. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Nica, P.E.; Agop, M.; Focsa, C. Target properties–plasma dynamics relationship in laser ablation of metals: Common trends for fs, ps and ns irradiation regimes. Appl. Surf. Sci. 2019, 506, 144926. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Gurlui, S.; Bulai, G.; Nica, P.; Agop, M.; Focsa, C. Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: Influence of the target physical properties on the plume dynamics. Appl. Surf. Sci. 2017, 417, 108–118. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Mihaila, I.; Agop, M. Experimental and theoretical aspects of a laser produced plasma. Phys. Plasmas 2014, 21, 093509. [Google Scholar] [CrossRef]
- Chen, J.; Lippert, T.; Ojeda-G-P, A.; Stender, D.; Schneider, C.W.; Wokaun, A. Langmuir probe measurements and mass spectrometry of plasma plumes generated by laser ablation of La0.4Ca0.6MnO3. J. Appl. Phys. 2014, 116, 073303. [Google Scholar]
- Kumari, S.; Kushwaha, A.; Khare, A. Spatial distribution of electron temperature and ion density in laser induced ruby (Al2O3:Cr3+) plasma using Langmuir probe. J. Instrum. 2012, 7, C05017. [Google Scholar] [CrossRef]
- Schou, J.; Toftmann, B.; Amoruso, S. Dynamics of a laser-produced silver plume in an oxygen background gas. In High-Power Laser Ablation V; International Society for Optics and Photonics: New Mexico, NM, USA, 2004; Volume 5448, pp. 22–26. [Google Scholar]
- Harilal, S.S.; Bindhu, C.V.; Tillack, M.S.; Najmabadi, F.; Gaeris, A.C. Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys. 2003, 93, 2380–2388. [Google Scholar] [CrossRef] [Green Version]
- Harilal, S.S.; Issac, R.C.; Bindhu, C.V.; Nampoori, V.P.N.; Vallabhan, C.P.G. Temporal and spatial evolution of C2 in laser induced plasma from graphite target. J. Appl. Phys. 1996, 80, 3561. [Google Scholar] [CrossRef] [Green Version]
- Vivien, C.; Hermann, J.; Perrone, A.; Boulmer-Leborgne, C. A study of molecule formation during laser ablation of graphite in low-pressure ammonia. J. Phys. D 1999, 32, 518–528. [Google Scholar] [CrossRef]
- Thestrup, B.; Toftmann, B.; Schou, J.; Doggett, B.; Lunney, J.G. Ion dynamics in laser ablation plumes from selected metals at 355 nm. Appl. Surf. Sci. 2002, 197, 175–180. [Google Scholar] [CrossRef]
- Harilal, S.S.; Bindhu, C.V.; Nampoor, V.P.N.; Vallabhan, C.P.G. Temporal and spatial Behavior of electron density and temperature in a laser-produced plasma from YBa2Cu3O7. Appl. Spectrosc. 1998, 52, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Nica, P.; Agop, M.; Gurlui, S.; Focsa, C. Oscillatory Langmuir probe ion current in laser-produced plasma expansion. EPL 2010, 89, 65001. [Google Scholar] [CrossRef]
- Tang, E.; Xiang, S.; Yang, M.; Li, L. Sweep Langmuir Probe and Triple Probe Diagnostics for Transient Plasma Produced by Hypervelocity Impact. Plasma Sci. Technol. 2012, 14, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.C.; Fallon, C.; Hayden, P.; Mujawar, M.; Yeates, P.; Costello, J.T. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas. Phys. Plasmas 2014, 21, 093113. [Google Scholar] [CrossRef]
- Bulgakov, A.V.; Bulgakova, N.M. Dynamics of laser-induced plume expansion into an ambient gas during film deposition. J. Phys. D 1999, 28, 1710–1718. [Google Scholar] [CrossRef]
- Focsa, C.; Gurlui, S.; Nica, P.; Agop, M.; Ziskind, M. Plume splitting and oscillatory behavior in transient plasmas generated by high-fluence laser ablation in vacuum. Appl. Surf. Sci. 2017, 424, 299–309. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Agop, M.; Nica, P.; Gurlui, S.; Mihaileanu, D.; Toma, S.; Focsa, C. Dispersive effects in laser ablation plasmas. Jpn. J. Appl. Phys. 2014, 53, 116202. [Google Scholar] [CrossRef]
- Irimiciuc, Ş.; Enescu, F.; Agop, A.; Agop, M. Lorenz Type Behaviors in the Dynamics of Laser Produced Plasma. Symmetry 2019, 11, 1135. [Google Scholar] [CrossRef] [Green Version]
- Irimiciuc, S.A.; Gurlui, S.; Nica, P.; Focsa, C.; Agop, M. A compact non-differential approach for modeling laser ablation plasma dynamics. J. Appl. Phys. 2017, 12, 083301. [Google Scholar] [CrossRef]
- Marine, W.; Bulgakova, N.M.N.M.; Patrone, L.; Ozerov, I. Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling. Appl. Phys. A 2004, 79, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Merlino, R.L. Understanding Langmuir probe current-voltage characteristics. Am. J. Phys. 2007, 75, 1078. [Google Scholar] [CrossRef] [Green Version]
- Nottale, L. Scale Relativity and Fractal Space-Time: An Approach to Unifying Relativity and Quantum Mechanics; Imperial College Press: London, UK, 2011. [Google Scholar]
- Merches, I.; Agop, M. Differentiability and Fractality in Dynamics of Physical Systems; World Scientific: Singapore, 2016. [Google Scholar]
- Agop, M.; Paun, V.P. On the New Paradigm of Fractal Theory; Fundamental and applications, Romanian Academy Publishing House: Bucharest, Romania, 2017. [Google Scholar]
- Agop, M.; Merches, I. Operational Procedures Describing Physical Systems; CRC Press, Taylor and Francis Group: London, UK, 2019. [Google Scholar]
- El-Nabulsi, R.A. Some implications of position dependent mass quantum fractional Hamiltonian in Quantum mechanics. Eur. Phys. J. Plus 2019, 134, 192. [Google Scholar] [CrossRef]
- Wójcik, D.; Białynicki-Birula, I.; Życzkowski, K. Time Evolution of Quantum Fractals. Phys. Rev. Lett. 2000, 85, 5022. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractals and quantum mechanics. Chaos 2000, 4, 780–790. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Balean, D. About Schrödinger Equation on Fractals CurvesImbedding inR3. Int. J. Theor. Phys. 2015, 54, 1275–1282. [Google Scholar] [CrossRef]
- Chuprikov, N.L.; Spiridonov, O.V. A new type of solution of the Schrödinger equationon a self-similar fractal potential. J. Phys. A 2008, 41, 409801. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Kusmartsev, F.V.; Kürten, K.E. Fractal and Chaotic Solutions of the Discrete Nonlinear Schrödinger Equation in Classical and Quantum Systems. J. Nonlinear Math. Phys. 2001, 8, 38–49. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal. J. Stat. Phys. 2018, 172, 1617–1640. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; WH Freeman Publisher: New York, NY, USA, 1993. [Google Scholar]
- Stoka, M.I. Integral Geometry; Romanian Academy Publishing House: Bucharest, Romania, 1967. [Google Scholar]
- Stoler, D. Equivalence Classes of Minimum Uncertainty Packets. Phys. Rev. D 1970, 1, 3217. [Google Scholar] [CrossRef]
- Stoler, D. Equivalence Classes of Minimum-Uncertainty Packets. II. Phys. Rev. D 1972, 4, 1925. [Google Scholar] [CrossRef]
(a) | 1st Structure Experimental Data (MHz) | 1st Structure Simulated Data (MHz) | ||||||
Fluence (J/cm2) | 1 cm | 2 cm | 2.5 cm | 3 cm | 1 cm | 2 cm | 2.5 cm | 3 cm |
28 | 17.5 ± 0.2 | 15 ± 0.8 | 13 ± 0.5 | 7.6 ± 0.6 | 18.5 ± 0.3 | 16.1 ± 0.1 | 13.5 ± 0.2 | 9.4 ± 0.2 |
57 | 19.5 ± 0.3 | 16.8 ± 0.6 | 13.5 ± 0.7 | 8.5 ± 0.7 | 21.7 ± 0.2 | 18.2 ± 0.4 | 14.2 ± 0.6 | 10.6 ± 0.35 |
85 | 21 ± 0.7 | 19 ± 0.4 | 18 ± 0.5 | 16.3 ± 0.1 | 22.4 ± 0.05 | 20.2 ± 0.6 | 17.7 ± 0.5 | 16.3 ± 0.2 |
115 | 22 ± 0.1 | 19.26 ± 0.2 | 18.5 ± 0.3 | 17.3 ± 0.2 | 22.8 ± 0.5 | 20.9 ± 0.3 | 18.4 ± 0.2 | 17.4 ± 0.1 |
(b) | 2nd Structure Experimental Data (MHz) | 2nd Structure Simulated Data (MHz) | ||||||
Fluence (J/cm2) | 1 cm | 2 cm | 2.5 cm | 3 cm | 1 cm | 2 cm | 2.5 cm | 3 cm |
28 | 7.8 ± 0.1 | 6.5 ± 0.3 | 2 ± 0.4 | 1.2 ± 0.6 | 7.4 ± 0.6 | 6.44 ± 0.1 | 2.4 ± 0.3 | 2.2 ± 0.1 |
57 | 8.4 ± 0.2 | 7.2 ± 0.1 | 5.6 ± 0.1 | 4.58 ± 0.2 | 8.68 ± 0.6 | 7.28 ± 0.04 | 5.68 ± 0.05 | 4.35 ± 0.05 |
85 | 9.5 ± 0.4 | 9.3 ± 0.5 | 9 ± 0.3 | 8.2 ± 0.2 | 8.96 ± 0.6 | 9.08 ± 0.1 | 8.78 ± 0.04 | 8.14 ± 0.04 |
115 | 10 ± 0.5 | 9.8 ± 0.5 | 9.3 ± 0.4 | 8.6 ± 0.3 | 9.12 ± 0.6 | 9.36 ± 0.06 | 8.99 ± 0.05 | 8.4 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agop, M.; Mihaila, I.; Nedeff, F.; Irimiciuc, S.A. Charged Particle Oscillations in Transient Plasmas Generated by Nanosecond Laser Ablation on Mg Target. Symmetry 2020, 12, 292. https://doi.org/10.3390/sym12020292
Agop M, Mihaila I, Nedeff F, Irimiciuc SA. Charged Particle Oscillations in Transient Plasmas Generated by Nanosecond Laser Ablation on Mg Target. Symmetry. 2020; 12(2):292. https://doi.org/10.3390/sym12020292
Chicago/Turabian StyleAgop, Maricel, Ilarion Mihaila, Florin Nedeff, and Stefan Andrei Irimiciuc. 2020. "Charged Particle Oscillations in Transient Plasmas Generated by Nanosecond Laser Ablation on Mg Target" Symmetry 12, no. 2: 292. https://doi.org/10.3390/sym12020292
APA StyleAgop, M., Mihaila, I., Nedeff, F., & Irimiciuc, S. A. (2020). Charged Particle Oscillations in Transient Plasmas Generated by Nanosecond Laser Ablation on Mg Target. Symmetry, 12(2), 292. https://doi.org/10.3390/sym12020292