Challenges in Supersymmetric Cosmology
Abstract
:1. Introduction
2. Inflation from Supersymmetry Breaking
The Set Up
3. Microscopic Model
3.1. The Generalised Fayet-Iliopoulos Model
3.2. Integrating Out Heavy Fields
3.3. Effective K ähler Potential and Superpotential
3.4. Inflation from the Effective Low-Energy Theory
- Region I: with , ,
- Region II: with , ,
- Region III: with , ,
- Region IV: with , .
3.5. The Effective Scalar Potential and Slow-Roll Parameters
4. Fayet-Iliopoulos (Fi) D-Terms in Supergravity
4.1. Review
4.2. The Scalar Potential in a Non R-Symmetry Frame
4.3. Example for Slow-Roll D-Term Inflation
4.4. A Small Field Inflation Model from Supergravity with Observable Tensor-to-Scalar Ratio
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borštnik, N.S.M.; Nielsen, H.F.B.; Khlopov, M.Y.; Lukman, D. Proceedings to the 21st International Workshop “What Comes Beyond the Standard Models”, June 23– July 1, 2018, Bled, Slovenia. arXiv, 2019; arXiv:1902.10628. [Google Scholar]
- Lyth, D.H.; Riotto, A. Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 1999, 314, 1–146. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. Inflation from Supersymmetry Breaking. Eur. Phys. J. C 2017, 77, 724. [Google Scholar] [CrossRef]
- Randall, L.; Thomas, S.D. Solving the cosmological moduli problem with weak scale inflation. Nucl. Phys. B 1995, 449, 229. [Google Scholar] [CrossRef] [Green Version]
- Riotto, A. Inflation and the nature of supersymmetry breaking. Nucl. Phys. B 1998, 515, 413–435. [Google Scholar] [CrossRef] [Green Version]
- Izawa, K.I. Supersymmetry - breaking models of inflation. Prog. Theor. Phys. 1998, 99, 157. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Covi, L.; Delepine, D. Inflation and supersymmetry breaking. Phys. Lett. B 2000, 491, 183. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Knoops, R. Gauge R-symmetry and de Sitter vacua in supergravity and string theory. Nucl. Phys. B 2014, 886, 43. [Google Scholar] [CrossRef]
- Catino, F.; Villadoro, G.; Zwirner, F. On Fayet-Iliopoulos terms and de Sitter vacua in supergravity: Some easy pieces. JHEP 2012, 1201, 002. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. Inflation from Supergravity with Gauged R-symmetry in de Sitter Vacuum. Eur. Phys. J. C 2016, 76, 680. [Google Scholar] [CrossRef] [Green Version]
- Cribiori, N.; Farakos, F.; Tournoy, M.; van Proeyen, A. Fayet-Iliopoulos terms in supergravity without gauged R-symmetry. JHEP 2018, 1804, 32. [Google Scholar] [CrossRef]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. Fayet-Iliopoulos terms in supergravity and D-term inflation. Eur. Phys. J. C 2018, 78, 366. [Google Scholar] [CrossRef] [Green Version]
- Aldabergenov, Y.; Ketov, S.V. Removing instability of inflation in Polonyi-Starobinsky supergravity by adding FI term. Mod. Phys. Lett. A 2018, 32, 1850032. [Google Scholar] [CrossRef] [Green Version]
- Halyo, E. Hybrid inflation from supergravity D terms. Phys. Lett. B 1996, 387, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Binetruy, P.; Dvali, G.R. D term inflation. Phys. Lett. B 1996, 388, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I. Inflation From Supersymmetry Breaking. Universe 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Wess, J.; Bagger, J. Supersymmetry and Supergravity; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Englert, F.; Brout, R. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132–133. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef] [Green Version]
- Fayet, P.; Iliopoulos, J. Spontaneously Broken Supergauge Symmetries and Goldstone Spinors. Phys. Lett. 1974, 51B, 461–464. [Google Scholar] [CrossRef]
- Antoniadis, I.; Ghilencea, D.M.; Knoops, R. Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications. JHEP 2015, 1502, 166. [Google Scholar] [CrossRef] [Green Version]
- Kaplunovsky, V.; Louis, J. Field dependent gauge couplings in locally supersymmetric effective quantum field theories. Nucl. Phys. B 1994, 422, 57–124. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.Z.; Proeyen, A.V. Supergravity; Cambridge Univ. Press: Cambridge, UK, 2012. [Google Scholar]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. A microscopic model for inflation from supersymmetry breaking. Eur. Phys. J. C 2019, 79, 624. [Google Scholar] [CrossRef]
- Benakli, K.; Chen, Y.; Goodsell, M.D. Minimal constrained superfields and the Fayet-Iliopoulos model. Eur. Phys. J. C 2018, 78, 711. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. arXiv, 2018; arXiv:1807.06211. [Google Scholar]
- Kuzenko, S.M. Taking a vector supermultiplet apart: Alternative Fayet-Iliopoulos-type terms. Phys. Lett. B 2018, 781, 723. [Google Scholar] [CrossRef]
- Kugo, T.; Uehara, S. N=1 Superconformal Tensor Calculus: Multiplets With External Lorentz Indices and Spinor Derivative Operators. Prog. Theor. Phys. 1985, 73, 235. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, S.; Kallosh, R.; Proeyen, A.V.; Wrase, T. Linear Versus Non-linear Supersymmetry, in General. JHEP 2016, 1604, 65. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. The cosmological constant in Supergravity. Eur. Phys. J. C 2018, 78, 718. [Google Scholar] [CrossRef]
- Antoniadis, I.; Rondeau, F. New Kähler invariant Fayet-Iliopoulos terms in supergravity and cosmological applications. arXiv 2019, arXiv:1912.08117. [Google Scholar]
- Aldabergenov, Y.; Chatrabhuti, A.; Ketov, S.V. Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity. Eur. Phys. J. C 2019, 79, 713. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds...... are available from the authors. |
q | ||
0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniadis, I.; Chatrabhuti, A. Challenges in Supersymmetric Cosmology. Symmetry 2020, 12, 468. https://doi.org/10.3390/sym12030468
Antoniadis I, Chatrabhuti A. Challenges in Supersymmetric Cosmology. Symmetry. 2020; 12(3):468. https://doi.org/10.3390/sym12030468
Chicago/Turabian StyleAntoniadis, Ignatios, and Auttakit Chatrabhuti. 2020. "Challenges in Supersymmetric Cosmology" Symmetry 12, no. 3: 468. https://doi.org/10.3390/sym12030468
APA StyleAntoniadis, I., & Chatrabhuti, A. (2020). Challenges in Supersymmetric Cosmology. Symmetry, 12(3), 468. https://doi.org/10.3390/sym12030468