Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments
Abstract
:1. Introduction
2. Spontaneous UR intensity and Spectrum Distortions
3. Analysis of the Harmonic Generation in Some FEL Experiments
3.1. SACLA FEL Experiment
3.2. POHANG FEL X-ray Experiments
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Phenomenological Model of Harmonic Power Evolution in High-Gain FELs
References
- Ginzburg, V.L. On the radiation of microradiowaves and their absorbtion in the air. Isvestia Akad. Nauk. SSSR (Fizika) 1947, 11, 1651. [Google Scholar]
- Motz, H.; Thon, W.; Whitehurst, R.N.J. Experiments on radiation by fast electron beams. Appl. Phys. 1953, 24, 826. [Google Scholar] [CrossRef]
- McNeil, B.W.J.; Thompson, N.R. X-ray free-electron lasers. Nat. Photonics 2010, 4, 814. [Google Scholar] [CrossRef]
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 015006. [Google Scholar] [CrossRef]
- Schmüser, P.; Dohlus, M.; Rossbach, J.; Behrens, C. Free-Electron Lasers in the Ultraviolet and X-ray Regime. In Springer Tracts in Modern Physics; Springer: Cham, Switzerland, 2014; Volume 258. [Google Scholar]
- Huang, Z.; Kim, K.J. Review of X-ray free-electron laser theory. Phys. Rev. ST-AB 2007, 10, 034801. [Google Scholar] [CrossRef]
- Margaritondo, G.; Ribic, P.R. A simplified description of X-ray free-electron lasers. J. Synchrotron Rad. 2011, 18, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margaritondo, G. Synchrotron light: A success story over six decades. Riv. Nuovo Cim. 2017, 40, 411–471. [Google Scholar]
- Bagrov, V.G.; Bisnovaty-Kogan, G.S.; Bordovitsyn, V.A.; Borisov, A.V.; Dorofeev, O.F.; Ya, E.V.; Pivovarov, Y.L.; Shorokhov, O.V.; Zhukovsky, V.C. Synchrotron Radiation Theory and Its Development; Bordovitsyn, V.A., Ed.; Word Scientific: Singapore, 1999; p. 447. [Google Scholar]
- Margaritondo, G. Characteristics and Properties of Synchrotron Radiation. In Synchrotron Radiation; Mobilio, S., Boscherini, F., Meneghini, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dattoli, G.; Ottaviani, P.L. Semi-analytical models of free electron laser saturation. Opt. Commun. 2002, 204, 283–297. [Google Scholar] [CrossRef]
- Zhukovsky, K.; Kalitenko, A. Phenomenological and numerical analysis of power evolution and bunching in single-pass X-ray FELs. J. Synchrotron Rad. 2019, 26, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhukovsky, K.; Kalitenko, A. Analysis of harmonic generation in planar undulators in single-pass free electron lasers. Russ. Phys. J. 2019, 61, 153–160. [Google Scholar]
- Zhukovsky, K.; Kalitenko, A. Phenomenological and numerical analysis of power evolution and bunching in single-pass X-ray FELs. Erratum. J. Synchrotron Rad. 2019, 26, 605–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhukovsky, K. Two-frequency undulator in a short SASE FEL for angstrom wavelengths. J. Opt. 2018, 20, 095003. [Google Scholar] [CrossRef]
- Zhukovsky, K. Analysis of harmonic generation in planar and elliptic bi-harmonic undulators and FELs. Results Phys. 2019, 13, 102248. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Analytical Description of Nonlinear Harmonic Generation Close to the Saturation Region in Free Electron Lasers. Mosc. Univ. Phys. Bull. 2019, 74, 480–487. [Google Scholar] [CrossRef]
- Emma, P. First lasing of the LCLS X-ray FEL at 1.5 Å. In Proceedings of the PAC09, Vancouver, BC, Canada, 4–8 May 2009. [Google Scholar]
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Ratner, D.; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Krzywinski, J.; et al. Second and third harmonic measurements at the linac coherent light source. Phys. Rev. ST-AB 2011, 14, 060701. [Google Scholar] [CrossRef] [Green Version]
- Biedron, S.G.; Dejusa, R.J.; Huanga, Z.; Miltona, S.V.; Sajaeva, V.; Berga, W.; Borlanda, M.; den Hartoga, P.K.; Erdmanna, M.; Fawleyc, W.M.; et al. Measurements of nonlinear harmonic generation at the Advanced Photon Source’s SASE FEL. Nucl. Instrum. Meth. Phys. Res. 2002, 483, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Milton, S.V.; Gluskin, E.; Arnold, N.D.; Benson, C.; Berg, W.; Biedron, S.G.; Borland, M.; Chae, Y.C.; Dejus, R.J.; den Hartog, P.K.; et al. Exponential Gain and Saturation of a Self-AmpliÞed Spontaneous Emission Free-Electron Laser. Science 2011, 292, 2037–2041. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Kim, K.-J. Nonlinear Harmonic Generation of Coherent Amplification and Self-Amplified Spontaneous Emission. Nucl. Instr. Meth. 2001, 475, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhukovsky, K.V. Effect of the 3rd undulator field harmonic on spontaneous and stimulated undulator radiation. J. Synchrotron Rad. 2019, 26, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Zhukovsky, K.V. Generation of UR Harmonics in Undulators with Multiperiodic Fields. Russ. Phys. J. 2019, 62, 1043–1053. [Google Scholar] [CrossRef]
- Alexeev, V.I.; Bessonov, E.G. On some methods of generating circularly polarized hard undulator radiation. Nucl. Instr. Meth. 1991, 308, 140. [Google Scholar]
- Dattoli, G.; Mikhailin, V.V.; Ottaviani, P.L.; Zhukovsky, K. Two-frequency undulator and harmonic generation by an ultrarelativistic electron. J. Appl. Phys. 2006, 100, 084507. [Google Scholar] [CrossRef]
- Zhukovsky, K. Analytical account for a planar undulator performance in a constant magnetic field. J. Electromagn. Waves Appl. 2014, 28, 1869–1887. [Google Scholar] [CrossRef]
- Dattoli, G.; Mikhailin, V.V.; Zhukovsky, K. Undulator radiation in a periodic magnetic field with a constant component. J. Appl. Phys. 2008, 104, 124507-1–124507-8. [Google Scholar] [CrossRef]
- Dattoli, G.; Mikhailin, V.V.; Zhukovsky, K.V. Influence of a constant magnetic field on the radiation of a planar undulator. Mosc. Univ. Phys. Bull. 2009, 64, 507–512. [Google Scholar] [CrossRef]
- Zhukovsky, K.; Srivastava, H. Operational solution of non-integer ordinary and evolution-type partial differential equations. Axioms 2016, 5, 29. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Solving evolutionary-type differential equations and physical problems using the operator method. Theor. Math. Phys. 2017, 190, 52–68. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Operational solution for some types of second order differential equations and for relevant physical problems. J. Math. Anal. Appl. 2017, 446, 628–647. [Google Scholar] [CrossRef]
- Dattoli, G.; Srivastava, H.M.; Zhukovsky, K.V. Orthogonality properties of the Hermite and related polynomials. J. Comput. Appl. Math. 2005, 182, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Srivastava, H.M.; Zhukovsky, K. Operational Methods and Differential Equations with Applications to Initial-Value problems. Appl. Math. Comput. 2007, 184, 979–1001. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. The operational solution of fractional-order differential equations, as well as Black-Scholes and heat-conduction equations. Mosc. Univ. Phys. Bull. 2016, 71, 237–244. [Google Scholar] [CrossRef]
- Zhukovsky, K. Operational Approach and Solutions of Hyperbolic Heat Conduction Equations. Axioms 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29, 51–63. [Google Scholar] [CrossRef]
- Kang, H.-S.; Chang-Ki, M.; Hoon, H.; Changbum, K.; Haeryong, Y.; Gyujin, K.; Inhyuk, N.; Soung, Y.B.; Hyo-Jin, C.; Geonyeong, M.; et al. Hard X-ray free-electron laser with femtosecondscale timing jitter. Nat. Photonics 2017, 11, 708–713. [Google Scholar] [CrossRef]
- Alferov, D.F.; Bashmakov Yu, A.; Bessonov, E.G. Undulator radiation. Sov. Phys. Tech. Phys. 1974, 18, 1336. [Google Scholar]
- Alferov, D.F.; Bashmakov, U.A.; Cherenkov, P.A. Radiation from relativistic electrons in a magnetic undulator. Usp. Fis. Nauk. 1989, 32, 200. [Google Scholar]
- Vinokurov, N.A.; Levichev, E.B. Undulators and wigglers for the production of radiation and other applications. Phys. Usp. 2015, 58, 917–939. [Google Scholar] [CrossRef]
- Dattoli, G.; Renieri, A.; Torre, A. Lectures on the Free Electron Laser Theory and Related Topics; World Scientific: Singapo, 1993. [Google Scholar]
- Prakash, B.; Huse, V.; Gehlot, M.; Mishra, G.; Mishra, S. Analysis of spectral properties of harmonic undulator radiation of anelectromagnet undulator. Optik 2016, 127, 1639–1643. [Google Scholar] [CrossRef]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. The Physics of Free Electron Lasers; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Bonifacio, R.; Pellegrini, C.; Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 1984, 50, 373. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; De Salvo, L.; Pierini, P. Large harmonic bunching in a high-gain free-electron laser. Nucl. Instrum. A 1990, 293, 627. [Google Scholar] [CrossRef]
- Huang, Z.; Kim, K.-J. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 2000, 62, 7295. [Google Scholar] [CrossRef] [PubMed]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Study of a noise degradation of amplification process in a multistage HGHG FEL. Opt. Commun. 2002, 202, 169–187. [Google Scholar] [CrossRef]
- Shatan, T.; Yu, L.-H. High-gain harmonic generation free-electron laser with variable wavelength. Phys. Rev. E 2005, 71, 046501. [Google Scholar] [CrossRef] [PubMed]
- Dattoli, G.; Giannessi, L.; Ottaviani, P.L.; Ronsivalle, C. Semi-analytical model of self-amplified spontaneous-emission free-electron lasers, including diffraction and pulse-propagation effects. J. Appl. Phys. 2004, 95, 3206–3210. [Google Scholar] [CrossRef]
- Dattoli, G.; Ottaviani, P.L.; Pagnutti, S. Nonlinear harmonic generation in high-gain free-electron lasers. J. Appl. Phys. 2005, 97, 113102. [Google Scholar] [CrossRef]
- Dattoli, G.; Ottaviani, P.L.; Pagnutti, S. Booklet for FEL Design; ENEA Pubblicazioni: Frascati, Italy, 2007. [Google Scholar]
- Zhukovsky, K.V. Generation of Coherent Radiation in the Near X-ray Band by a Cascade FEL with a Two-Frequency Undulator. Mosc. Univ. Phys. Bull. 2018, 73, 364–371. [Google Scholar] [CrossRef]
- Zhukovsky, K. Compact single-pass X-ray FEL with harmonic multiplication cascades. Opt. Commun. 2018, 418, 57–64. [Google Scholar] [CrossRef]
- Zhukovsky, K. Soft X-ray generation in cascade SASE FEL with two-frequency undulator. EPL 2017, 119, 34002. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Generation of X-Ray Radiation in Free-Electron Lasers with Two-Frequency Undulators. Russ. Phys. J. 2018, 60, 1630–1637. [Google Scholar] [CrossRef]
- Zhukovsky, K. Generation of coherent soft X-ray radiation in short FEL with harmonic multiplication cascades and two-frequency undulator. J. Appl. Phys. 2017, 122, 233103. [Google Scholar] [CrossRef]
- Zhukovsky, K. High-harmonic X-ray undulator radiation for nanoscale-wavelength free-electron lasers. J. Phys. D 2017, 50, 505601. [Google Scholar] [CrossRef]
- Zhukovsky, K.; Potapov, I. Two-frequency undulator usage in compact self-amplified spontaneous emission free electron laser in Roentgen range. Laser Part. Beams 2017, 35, 326. [Google Scholar] [CrossRef]
- Tetsuya, I.; Hideki, A.; Takao, A.; Yoshihiro, A.; Noriyoshi, A.; Teruhiko, B.; Hiroyasu, E.; Kenji, F.; Toru, F.; Yukito, F.; et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 2012, 6, 540–544. [Google Scholar]
- Owada, S.; Togawa, K.; Inagaki, T.; Hara, T.; Tanaka, T.; Joti, Y.; Koyama, T.; Nakajima, K.; Ohashi, H.; Senba, Y.; et al. Soft X-ray free-electron laser beamline at SACLA: The light source, photon beamline and experimental station. J. Synchrotron Rad. 2018, 25, 282–288. [Google Scholar] [CrossRef]
- Ego, H. RF system of the SPring-8 upgrade project. In Proceedings of the IPAC2016, Busan, Korea, 8−13 May 2016. [Google Scholar]
- Tono, K.; Hara, T.; Yabashi, M.; Tanaka, H. Multiple-beamline operation of SACLA. J. Synchrotron Rad. 2019, 26, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Ichiro, I. Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photonics 2019, 13, 319–322. [Google Scholar]
- Tono, K.; Togashi, T.; Inubushi, Y.; Sato, T.; Katayama, T.; Ogawa, K.; Ohashi, H.; Kimura, H.; Takahashi, S.; Takeshita, K.; et al. Beamline, experimental stations and photon beam diagnostics for the hard X-ray free electron laser of SACLA. New J. Phys. 2013, 15, 083035. [Google Scholar] [CrossRef]
- Yabashi, M. Overview of the SACLA facility. J. Synchrotron Rad. 2015, 22, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Yabashi, M.; Tanaka, H.; Tono, K.; Ishikawa, T. Status of the SACLA Facility. Appl. Sci. 2017, 7, 604. [Google Scholar] [CrossRef] [Green Version]
- Takashi, T.; Shunji, G.; Toru, H.; Takaki, H.; Haruhiko, O.; Kazuaki, T.; Makina, Y.; Hitoshi, T. Undulator commissioning by characterization of radiation in X-ray free electron lasers. Phys. Rev. ST-AB 2012, 15, 110701. [Google Scholar]
Beam parameters: relativistic factor γ = 1526, beam power PE = 234 GW, current I0 = 300 A, current density J = 2.9 × 1010 A/m2, beam section ∑ = 1.03×10−8 m2, emittances μm, βx = 6 m, βy = 4 m, beam size ≈40 μm, divergence ≈ 8 μrad, ~40 μrad, γθ ≈ 0.06, energy spread (per slice) σe = 1.6 × 10−3 | |||||
Undulator parameters: k = 2.1, λu = 1.8 cm, N = 259, section length 4.66 m | |||||
Calculated FEL properties: saturated length Ls = 13 m, gain length Lgain = 1.1 m, radiation beam size ≅ 36 μm | |||||
Harmonic number | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 |
Bessel coefficient fn | 0.79 | 0.09 | 0.32 | 0.09 | 0.18 |
Pierce parameter | 0.0015 | 0.0003 | 0.0008 | 0.0003 | 0.0006 |
Harmonic wavelength λn, nm | 12.4 | 6.2 | 4.1 | 3.1 | 2.5 |
Saturated power PF,n,W | 1.9 × 108 | — | 6 × 105 | — | 3 × 104 |
Beam parameters: relativistic factor γ = 15264, beam power PE = 78 TW, current I0 = 10 kA, current density J = 3.04×1012 A/m2, beam section ∑ = 3.29×10−9 m2, emittances μm, βx,y = 20m, beam size ≈ 22μm, divergence ≈ 1.1 μrad, ~ 9 μrad, γθ ≈ 0.14, energy spread σe = 0.926 × 10−3 | |||||
Undulator parameters: k = 2.1, λu = 1.8 cm, N = 277, section length 4.66 m | |||||
Calculated FEL properties: saturated length Ls = 38 m, gain length Lgain = 2.6 m, radiation beam size ≅ 11 μm | |||||
Harmonic number | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 |
Bessel coefficient fn | 0.79 | 0.19 | 0.27 | 0.19 | 0.11 |
Pierce parameter | 0.00075 | 0.0003 | 0.00037 | 0.0003 | 0.0002 |
Harmonic wavelength λn, nm | 12.4 | 6.2 | 4.1 | 3.1 | 2.5 |
Saturated power PF,n,W | 1.9 × 1010 | 9 × 106 | 5 × 107 | 5 × 106 | 1.6 × 105 |
Beam parameters: γ = 5870, beam power PE = 6.60 TW, current I0 = 2.2 kA, current density J = 1.246 × 1011 A/m2, beam section ∑ = 1.766 × 10−8 m2, emittances = 0.55 μm, β = 30 m, beam size = 53 μm, divergence ≈ 1.8 μrad, ≈ 15 μrad, energy spread σe = 0.5 × 10−3 | |||||
Undulator parameters: k = 2, λu = 3.5 cm, section length 5 m | |||||
Calculated FEL properties: saturated length Ls = 31 m, gain length Lgain = 2.0 m, radiation beam size ≈0.29 mm | |||||
Harmonic number | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 |
Bessel coefficient fn | 0.80 | 0.13 | 0.32 | 0.13 | 0.16 |
Pierce parameter | 0.0010 | 0.0003 | 0.0005 | 0.0003 | 0.0003 |
Harmonic wavelength λn, nm | 1.52 | 0.76 | 0.51 | 0.38 | 0.30 |
Saturated power PF,n,W | 8.2 × 109 | 3.2 × 106 | 5.4 × 107 | 1.6 × 106 | 2.0 × 106 |
Beam parameters: γ = 15,660, beam power PE = 20.0 TW, current I0 = 2,5 kA, current density J = 3.16 × 1011 A/m2, beam section ∑ = 7.91 × 10−9 m2, emittances μm, β ≈ 36 m, beam size = 35 μm, divergence ≈ 1 μrad, ≈4.5 μrad, energy spread σe = 0.18 × 10−3 | |||||
Undulator parameters: k = 1.87, λu = 2.571 cm, section length 5 m | |||||
Calculated FEL properties: saturated length Ls ~ 55 m, gain length Lgain = 3.4 m, radiation beam size ≈15 μm | |||||
Harmonic number | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 |
Bessel coefficient fn | 0.82 | 0.09 | 0.31 | 0.09 | 0.16 |
Pierce parameter | 0.0004 | 0.00009 | 0.0002 | 0.00009 | 0.00014 |
Harmonic wavelength λn, nm | 0.144 | 0.072 | 0.048 | 0.036 | 0.029 |
Saturated power PF,n,W | 1.0 × 1010 | 2.0 × 106 | 1.0 × 108 | 1.0 × 106 | 6.0 × 106 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhukovsky, K. Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments. Symmetry 2020, 12, 1258. https://doi.org/10.3390/sym12081258
Zhukovsky K. Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments. Symmetry. 2020; 12(8):1258. https://doi.org/10.3390/sym12081258
Chicago/Turabian StyleZhukovsky, Konstantin. 2020. "Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments" Symmetry 12, no. 8: 1258. https://doi.org/10.3390/sym12081258
APA StyleZhukovsky, K. (2020). Synchrotron Radiation in Periodic Magnetic Fields of FEL Undulators—Theoretical Analysis for Experiments. Symmetry, 12(8), 1258. https://doi.org/10.3390/sym12081258