Application of Artificial Intelligence (AI) for Sustainable Highway and Road System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Background of AFM
2.4. Description of Proposed Model
2.4.1. Support Vector Regression (SVR)
2.4.2. Hyperparameter Optimization Using BOA
3. Result & Discussion
3.1. Hybrid BOA-SVR Model Development
3.2. Evaluation of the Hybrid BOA-SVR Model
4. Conclusions
- A hybrid AI model of BOA-SVR is developed for the anticipation of adhesive force of asphalt.
- The mean, median and standard deviation of experimental and predicted adhesive force seems very close. The interquartile ranges of the experimental and predicted results are also closed which are 111.78 and 101.95, respectively.
- The predicted results overlap with those of the laboratory tests, since the R2 and adjusted R2 values between the experimental and predicted values are approximately 90.5%.
- The developed model shows that the relative deviations are well dispersed around zero line with low deviations. The residual data points also lie around the zero line, which further validates the reliability of the proposed model.
- The values of statistical error parameters (MAE, RMSE) were obtained to be low. Besides, the value of fractional bias ( is found to be 0.0213, which is very close to zero, indicating that the model is reliable and robust.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, H.; Dai, Q.; You, Z.; Ye, M.; Yap, Y.K. Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder. Constr. Build. Mater. 2016, 113, 988–996. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, A.; Amirkhanian, S. Influence on rheological characteristics of asphalt binders containing carbon nanoparticles. J. Mater. Civ. Eng. 2011, 23, 423–431. [Google Scholar] [CrossRef]
- Hassan, M.; Mamun, A.A.; Hossain, M.; Arifuzzaman, M. Moisture damage modeling in lime and chemically modified asphalt at nanolevel using ensemble computational intelligence. Computat. Intell. Neurosci. 2018, 1100–1114. [Google Scholar] [CrossRef] [Green Version]
- Arifuzzaman, M.; Gazder, U.; Islam, M.; Mamun, A. Prediction and sensitivity analysis of CNTs-modified asphalt’s adhesion force using a radial basis neural network model. J. Adhes. Sci. Technol. 2019, 34, 1100–1114. [Google Scholar] [CrossRef]
- Arifuzzaman, M. Advanced ANN prediction of moisture damage in CNT modified asphalt binder. Soft Comput. Civ. Eng. 2017, 1, 1–11. [Google Scholar]
- Arifuzzaman, M.; Islam, M.S.; Hossain, M.I. Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence. Neural Comput. Appl. 2017, 28, 125–134. [Google Scholar] [CrossRef]
- Galan, J.J.; Silva, L.M.; Pérez, I.; Pasandín, A.R. Mechanical Behavior of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste: A Design of Experiments Approach. Sustainability 2019, 11, 3730. [Google Scholar] [CrossRef] [Green Version]
- Plati, C.; Cliatt, B. A Sustainability Perspective for Unbound Reclaimed Asphalt Pavement (RAP) as a Pavement Base Material. Sustainability 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.K.; Shah, S.A.R.; Sadiq, A.N.; Siddiq, M.U.; Ahmad, H.; Nawaz, S.; Javead, A.; Saeed, M.H.; Khan, A.R. Symmetric Performance Analysis for Mechanical Properties of Sustainable Asphalt Materials under Varying Temperature Conditions: An Application of DT and NDT Digital Techniques. Symmetry 2020, 12, 433. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Chung, H.-W.; Subgranon, T.; Tia, M. Development of Mix Designs for Minimally Refined Reclaimed Asphalt Pavement (RAP) Concrete for Florida Concrete Test Road. Sustainability 2018, 10, 2598. [Google Scholar] [CrossRef] [Green Version]
- Arifuzzaman, M.; Tarefder, R.; Islam, M. Behavior of Carbon Nano-Tubes (CNTs) as Modifier to Resist Aging and Moisture Damage in Asphalt. Nanosci. Nanotechnol. Asia 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Gazder, U.; Alam, M.; Sirin, O.; Mamun, A. Modelling of Asphalt’s Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis. Comput. Intell. Neurosci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.; Arifuzzaman, M.; Taha, R. Nano scale aging characterization of carbon nanotube modified asphalt binders. In Proceedings of the Advances in Materials and Pavement Prediction; CRC Press: London, UK, 2018; p. 4. [Google Scholar] [CrossRef]
- Espinoza, M.; Campos, N.; Yang, R.; Ozer, H.; Aguiar-Moya, J.P.; Baldi, A.; Loría-Salazar, L.G.; Al-Qadi, I.L. Carbon Footprint Estimation in Road Construction: La Abundancia–Florencia Case Study. Sustainability 2019, 11, 2276. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, G.; Di Mascio, P.; Moretti, L. Comparative Life Cycle Assessment of Lighting Systems and Road Pavements in an Italian Twin-Tube Road Tunnel. Sustainability 2018, 10, 4165. [Google Scholar] [CrossRef] [Green Version]
- Kleizienė, R.; Šernas, O.; Vaitkus, A.; Simanavičienė, R. Asphalt Pavement Acoustic Performance Model. Sustainability 2019, 11, 2938. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanian, A.N.; Amirkhanian, S.N. Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles. Int. J. Pavement Eng. 2011, 12, 533–541. [Google Scholar]
- Rath, P.; Love, J.E.; Buttlar, W.G.; Reis, H. Performance Analysis of Asphalt Mixtures Modified with Ground Tire Rubber Modifiers and Recycled Materials. Sustainability 2019, 11, 1792. [Google Scholar] [CrossRef] [Green Version]
- White, G. A Synthesis on the Effects of Two Commercial Recycled Plastics on the Properties of Bitumen and Asphalt. Sustainability 2020, 12, 8594. [Google Scholar] [CrossRef]
- Rodrigues, C.; Capitão, S.; Picado-Santos, L.; Almeida, A. Full Recycling of Asphalt Concrete with Waste Cooking Oil as Rejuvenator and LDPE from Urban Waste as Binder Modifier. Sustainability 2020, 12, 8222. [Google Scholar] [CrossRef]
- Omranian, S.R.; Hamzah, M.O.; Pipintakos, G.; Vuye, C.; Hasan, M.R.M. Effects of Short-Term Aging on the Compactibility and Volumetric Properties of Asphalt Mixtures Using the Response Surface Method. Sustainability 2020, 12, 6181. [Google Scholar] [CrossRef]
- Liu, H.; Fu, L.; Jiao, Y.; Tao, J.; Wang, X. Short-Term Aging Effect on Properties of Sustainable Pavement Asphalts Modified by Waste Rubber and Diatomite. Sustainability 2017, 9, 996. [Google Scholar]
- Ge, D.; Zhou, X.; Chen, S.; Jin, D.; You, Z. Laboratory Evaluation of the Residue of Rubber-Modified Emulsified Asphalt. Sustainability 2020, 12, 8383. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Su, M.-M.; Zhao, S.-F.; Zhang, Y.-P.; Zhang, Z.-P. High and low temperature properties of nano-particles/polymer modified asphalt. Constr. Build. Mater. 2016, 114, 323–332. [Google Scholar] [CrossRef]
- de Melo, J.V.S.; Trichês, G. Evaluation of properties and fatigue life estimation of asphalt mixture modified by organophilic nanoclay. Constr. Build. Mater. 2017, 140, 364–373. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2016, 4, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Mockus, J. Bayesian Approach to Global Optimization, 1st ed.; Springer: Dordrecht, The Netherlands, 1989; p. 270. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Kumar, A.; Luo, J.; Bennett, G.F. Statistical evaluation of Lower Flammability Distance(LFD) using four hazardous release models. Process Saf. Prog. 1993, 12, 1–11. [Google Scholar] [CrossRef]
- Sultana, N.; Hossain, S.M.; Alam, M.; Islam, M.; Al Abtah, M. Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete. Adv. Eng. Softw. 2020, 149, 102887. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Hassan, R. Moisture damage prediction of polymer modified asphalt binder using support vector regression. J. Comput. Theor. Nanosci. 2014, 11, 2221–2227. [Google Scholar] [CrossRef]
- Kumar, A.; Bellam, N.K.; Sud, A. Performance of an industrial source complex model: Predicting long-term concentrations in an urban area. Environ. Prog. 1999, 18, 93–100. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Mirabdolazimi, S.; Sadeghnejad, M. Evaluation the effect of nano-tio2 on the rutting and fatigue behavior of asphalt mixtures. Constr. Build. Mater. 2014, 54, 566–571. [Google Scholar] [CrossRef]
Property | Method | Values |
---|---|---|
PG Grade | ASTM D6373 | 66–22 |
Viscosity (centipoise) | ASTM D4402 | 500 |
Specific gravity | ASTM D-70 | 1.02 |
Input Factors | Output | ||
---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | |
Binder Condition (Fresh, aged and wet) | Binder types (Base, SB4, SB5, SBS4 and SBS5) | Percentage of CNT | Adhesion force |
SVR Model Hyperparameter | Values |
---|---|
Epsilon | 8.2622 |
Box Constraint | 138.47 |
Kernel function | Gaussian |
Kernel Scale | 0.98815 |
Parameters | Expt. | SVR |
---|---|---|
Observation | 405 | 405 |
Mean | 181.29 | 179.35 |
Median | 154.19 | 156.47 |
Std. Deviation | 82.39 | 70.80 |
Minimum | 41.96 | 60.68 |
Maximum | 466.93 | 396.84 |
CoefVar | 45.45 | 39.47 |
SEMean | 4.09 | 3.52 |
Interquartile range | 111.78 | 101.95 |
Criterion | SVR |
---|---|
R | 0.951 (p-value 0.000) |
MAE | 14.2602 |
RMSE | 26.5176 |
FB | 0.0213 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arifuzzaman, M.; Aniq Gul, M.; Khan, K.; Hossain, S.M.Z. Application of Artificial Intelligence (AI) for Sustainable Highway and Road System. Symmetry 2021, 13, 60. https://doi.org/10.3390/sym13010060
Arifuzzaman M, Aniq Gul M, Khan K, Hossain SMZ. Application of Artificial Intelligence (AI) for Sustainable Highway and Road System. Symmetry. 2021; 13(1):60. https://doi.org/10.3390/sym13010060
Chicago/Turabian StyleArifuzzaman, Md, Muhammad Aniq Gul, Kaffayatullah Khan, and S. M. Zakir Hossain. 2021. "Application of Artificial Intelligence (AI) for Sustainable Highway and Road System" Symmetry 13, no. 1: 60. https://doi.org/10.3390/sym13010060
APA StyleArifuzzaman, M., Aniq Gul, M., Khan, K., & Hossain, S. M. Z. (2021). Application of Artificial Intelligence (AI) for Sustainable Highway and Road System. Symmetry, 13(1), 60. https://doi.org/10.3390/sym13010060