Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Özdemir, M.E.; Avci, M.; Set, E. On some inequalities of Hermite–Hadamard type via m-convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar]
- İşcan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacettepe J. Math. Stat. 2013, 43, 935–942. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. Hermite–Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications. Adv. Differ. Equ. 2020, 2020, 508. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. n-polynomial exponential-type p-convex function with some related inequalities and their application. Heliyon 2020, 6, e05420. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite–Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Tariq, M.; Nasir, J.; Sahoo, S.K.; Mallah, A.A. A note on some Ostrowski type inequalities via generalized exponentially convex functions. J. Math. Anal. Model. 2021, 2, 1–15. [Google Scholar]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (h,m)-Convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Toader, G.H. Some inequalities for m-convex functions. Studia Univ. Babes-Bolyai Math. 1993, 38, 21–28. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Type Inequalities and Applications; RGMIA Monographs. 2000. Available online: http://rgmia.vu.edu.au/monographs/hermite_hadamard.html (accessed on 2 August 2021).
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite–Hadamard type inequality and its estimations via generalized convex functions of Raina type. Math. Model. Numer. Simul. Appl. 2021, 1, 32–43. [Google Scholar] [CrossRef]
- Atangana, A. Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Solitons Fractals 2020, 136, 109860. [Google Scholar] [CrossRef] [PubMed]
- Danane, J.; Allali, K.; Hammouch, Z. Mathematical analysis of a fractional differential model of HBV infection with antibody immune response. Chaos Solitons Fractals 2020, 136, 109787. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Samet, B.; Dutta, H. A study on fractional host parasitoid population dynamical model to describe insect species. Numer. Methods Part. Differ. Equ. 2020, 37, 1673–1692. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons to the fractional perturbed NLSE in nano-fibers. Discret. Cont. Dyn. Syst. 2020, 3, 925–936. [Google Scholar]
- Veeresha, P.; Baskonus, H.M.; Prakasha, D.G.; Gao, W.; Yel, G. Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena. Chaos Solitons Fractals 2020, 133, 109–661. [Google Scholar] [CrossRef]
- Mubeen, S.; Iqbal, S.; Rahman, G. Contiguous function relations and an integral representation for Appell k-series F1,k. Int. J. Math. Res. 2015, 4, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, E.; Rogowski, K. Time-domain analysis of fractional electrical circuit containing two ladder elements. Electronics 2021, 10, 475. [Google Scholar] [CrossRef]
- Awan, A.U.; Samia, R.; Samina, S.; Abro, K.A. Fractional modeling and synchronization of ferrofluid on free convection flow with magnetolysis. Eur. Phys. J. Plus 2020, 135, 841. [Google Scholar] [CrossRef]
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Sebaa, N.; Fellah, Z.; Lauriks, W.; Depollier, C. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 2006, 86, 2668–2677. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Dyaz, R.; Pariguan, E. On hypergeometric functions and pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Habib, S.; Mubeen, S.; Naeem, M.N.; Qi, F. Generalized k-fractional conformable integrals and related inequalities. AIMS Math. 2019, 4, 343–358. [Google Scholar] [CrossRef]
- Huang, C.J.; Rahman, G.; Nisar, K.S.; Ghaffar A, Qi, F. Some Inequalities of Hermite–Hadamard type for k-fractional Conformable Integrals. Aust. J. Math. Anal. Appl. 2019, 16, 1–9. [Google Scholar]
- Özdemir, M.E.; Avci, M.; Kavurmaci, H. Hermite–Hadamard type for s-convex and s-concave functions via fractional integrals. arXiv 2012, arXiv:1202.0380. [Google Scholar]
- Deng, J.; Wang, J. Fractional Hermite–Hadamard inequalities for (α,m)-logarithmically convex functions. J. Inequal. App. 2013, 2013, 364. [Google Scholar] [CrossRef] [Green Version]
- Pearce, C.E.M.; Pečarić, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Set, E. New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second-sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Du, T.S.; Zhang, Y. k-fractional integral trapezium-like inequalities through (h, m)-convex and (α,m)-convex mappings. J. Inequal. Appl. 2017, 2017, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Set, E.; Gzpinar, A.; Butt, S.I. A study on Hermite–Hadamard-type inequalities via new fractional conformable integrals. Asian-Eur. J. Math. 2021, 14, 2150016. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, M.; Sahoo, S.K.; Ahmad, H.; Sitthiwirattham, T.; Soontharanon, J. Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators. Symmetry 2021, 13, 1880. https://doi.org/10.3390/sym13101880
Tariq M, Sahoo SK, Ahmad H, Sitthiwirattham T, Soontharanon J. Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators. Symmetry. 2021; 13(10):1880. https://doi.org/10.3390/sym13101880
Chicago/Turabian StyleTariq, Muhammad, Soubhagya Kumar Sahoo, Hijaz Ahmad, Thanin Sitthiwirattham, and Jarunee Soontharanon. 2021. "Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators" Symmetry 13, no. 10: 1880. https://doi.org/10.3390/sym13101880
APA StyleTariq, M., Sahoo, S. K., Ahmad, H., Sitthiwirattham, T., & Soontharanon, J. (2021). Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators. Symmetry, 13(10), 1880. https://doi.org/10.3390/sym13101880