Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative
Abstract
:1. Introduction
2. Basic Preliminaries
3. Main Result
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Baskonus, H.M.; Sánchez-Ruiz, L.M.; Ciancio, A. New Challenges Arising in Engineering Problems with Fractional and Integer Order. Fractal Fract. 2021, 5, 35. [Google Scholar] [CrossRef]
- Fernandez, A.; Ozarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, A. An integral equation involving Legendre functions. J. Soc. Indust. Appl. Math. 1964, 12, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. New approach to a generalized fractional integral, Applied Mathematics and Computation. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar]
- Diaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.D.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709. [Google Scholar] [CrossRef] [Green Version]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers–Mittag-Leffler stability results of ψ-Hilfer nonlocal Cauchy problem. Rend. Del Circ. Mat. Palermo Ser. 2021, 70, 57–77. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K.; Jarad, F. Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 147, 110931. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Abdo, M.S.; Thabet, S.T.; Ahmad, B. The existence and Ulam–Hyers stability results for ψ-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1757–1780. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K.; Jarad, F.; Abdeljawad, T. Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay. Adv. Differ. Equ. 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Abdellatif, B.; Sina, E.; Azhar, H.; Shahram, R. The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϑ-Caputo fractional operators. Adv. Differ. Equ. 2021, 95, 1–21. [Google Scholar] [CrossRef]
- Shatanawi, W.; Boutiara, A.; Abdo, M.S.; Jeelani, M.B.; Abodayeh, K. Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative. Adv. Differ. Equ. 2021, 294, 1–19. [Google Scholar] [CrossRef]
- Abdo, M.S.; Panchal, S.K.; Saeed, A.M. Fractional boundary value problem with ϑ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 65. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y.R. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Benchohra, M.; Lazreg, J.E.; Nieto, J.J.; Zhou, Y. Nonlocal Initial Value Problem for Hybrid Generalized Hilfer-type Fractional Implicit Differential Equations. Nonautonomous Dyn. Syst. 2021, 8, 87–100. [Google Scholar] [CrossRef]
- Srivastava, H.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Dhage, B.C. A fixed point theorem in Banach algebras involving three operators with applications. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Dhage, B.C. A nonlinear alternative in Banach algebras with applications to functional differential equations. Nonlinear Funct. Anal. Appl. 2004, 8, 563–575. [Google Scholar]
- Dhage, B.C. Basic results in the theory of hybrid differential equations with mixed perturbation of second type. Funct. Diff. Equ. 2012, 19, 87–106. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutiara, A.; Abdo, M.S.; Almalahi, M.A.; Ahmad, H.; Ishan, A. Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative. Symmetry 2021, 13, 1937. https://doi.org/10.3390/sym13101937
Boutiara A, Abdo MS, Almalahi MA, Ahmad H, Ishan A. Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative. Symmetry. 2021; 13(10):1937. https://doi.org/10.3390/sym13101937
Chicago/Turabian StyleBoutiara, Abdellatif, Mohammed S. Abdo, Mohammed A. Almalahi, Hijaz Ahmad, and Amira Ishan. 2021. "Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative" Symmetry 13, no. 10: 1937. https://doi.org/10.3390/sym13101937
APA StyleBoutiara, A., Abdo, M. S., Almalahi, M. A., Ahmad, H., & Ishan, A. (2021). Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative. Symmetry, 13(10), 1937. https://doi.org/10.3390/sym13101937