Measure of Departure from Conditional Symmetry Based on Cumulative Probabilities for Square Contingency Tables
Abstract
:1. Introduction
2. Measure
3. Confidence Interval of Measure
4. Data Analysis
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Constantine, A.G.; Gower, J.C. Models for the analysis of interregional migration. Environ. Plan. A 1982, 14, 477–497. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Bowker, A.H. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 1948, 43, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Bishop, Y.M.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analysis: Theory and Practice; The MIT Press: Cambridge, MA, USA, 1975. [Google Scholar] [CrossRef]
- Tahata, K.; Tomizawa, S. Symmetry and asymmetry models and decompositions of models for contingency tables. SUT J. Math. 2014, 50, 131–165. [Google Scholar]
- Gower, J.C. The analysis of asymmetry and orthogonality. In Recent Developments in Statistics; Barra, J.R., Ed.; Springer: Amsterdam, The Netherlands, 1977; pp. 109–123. [Google Scholar]
- Constantine, A.G.; Gower, J.C. Graphical representation of asymmetric matrices. Appl. Stat. 1978, 27, 297–304. [Google Scholar] [CrossRef]
- Tomizawa, S.; Murata, M. Gauss discrepancy type measure of degree of residuals from symmetry for square contingency tables. J. Korean Stat. Soc. 1992, 21, 59–69. [Google Scholar]
- Greenacre, M. Correspondence analysis of square asymmetric matrices. Appl. Stat. 2000, 49, 297–310. [Google Scholar] [CrossRef]
- McCullagh, P. A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 1978, 65, 413–418. [Google Scholar] [CrossRef]
- Tomizawa, S.; Saitoh, K. Measure of departure from conditional symmetry for square contingency tables with ordered categories. J. Jpn. Stat. Soc. 1999, 29, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K. Gendai Nihon No Kaikyu Kouzou (Class Structure in Modern Japan: Theory, Method and Quantitative Analysis); Toshindo Press: Tokyo, Japan, 1999. (In Japanese) [Google Scholar]
- Iki, K.; Tahata, K.; Tomizawa, S. Measure of departure from marginal homogeneity using marginal odds for multi-way tables with ordered categories. J. Appl. Stat. 2012, 39, 279–295. [Google Scholar] [CrossRef]
- Patil, G.P.; Taillie, C. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 1982, 77, 548–561. [Google Scholar] [CrossRef]
- Read, T.R.C.; Cressie, N. Goodness-of-Fit Statistics for Discrete Multivariate Data; Springer: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
(a) Applied to the occupational status data in 1955. | |||
Estimate | Standard Error | Confidence Interval | |
−0.8 | 0.023 | 0.004 | (0.016, 0.030) |
−0.6 | 0.042 | 0.006 | (0.029, 0.055) |
−0.4 | 0.058 | 0.009 | (0.041, 0.075) |
−0.2 | 0.071 | 0.010 | (0.050, 0.091) |
0 | 0.081 | 0.012 | (0.058, 0.105) |
0.2 | 0.090 | 0.014 | (0.065, 0.115) |
0.4 | 0.097 | 0.014 | (0.070, 0.124) |
0.6 | 0.102 | 0.014 | (0.074, 0.130) |
0.8 | 0.105 | 0.015 | (0.076, 0.134) |
1 | 0.108 | 0.015 | (0.078, 0.138) |
1.2 | 0.109 | 0.015 | (0.080, 0.139) |
1.4 | 0.110 | 0.015 | (0.080, 0.140) |
1.6 | 0.110 | 0.015 | (0.080, 0.140) |
(b) Applied to the occupational status data in 1965. | |||
Estimate | Standard Error | Confidence Interval | |
−0.8 | 0.046 | 0.006 | (0.033, 0.058) |
−0.6 | 0.082 | 0.011 | (0.061, 0.104) |
−0.4 | 0.113 | 0.015 | (0.084, 0.142) |
−0.2 | 0.137 | 0.018 | (0.103, 0.171) |
0 | 0.156 | 0.020 | (0.118, 0.195) |
0.2 | 0.172 | 0.021 | (0.130, 0.213) |
0.4 | 0.183 | 0.022 | (0.140, 0.227) |
0.6 | 0.192 | 0.023 | (0.147, 0.237) |
0.8 | 0.198 | 0.023 | (0.152, 0.244) |
1 | 0.203 | 0.024 | (0.156, 0.249) |
1.2 | 0.205 | 0.024 | (0.158, 0.252) |
1.4 | 0.206 | 0.024 | (0.159, 0.253) |
1.6 | 0.206 | 0.024 | (0.159, 0.253) |
(a) Applied to the occupational status data in 1955. | |||
Estimate | Standard Error | Confidence Interval | |
−0.8 | 0.058 | 0.008 | (0.042, 0.074) |
−0.6 | 0.104 | 0.014 | (0.077, 0.131) |
−0.4 | 0.140 | 0.018 | (0.105, 0.175) |
−0.2 | 0.168 | 0.021 | (0.127, 0.209) |
0 | 0.190 | 0.023 | (0.145, 0.235) |
0.2 | 0.207 | 0.025 | (0.158, 0.255) |
0.4 | 0.219 | 0.026 | (0.169, 0.270) |
0.6 | 0.229 | 0.026 | (0.177, 0.281) |
0.8 | 0.236 | 0.027 | (0.183, 0.288) |
1 | 0.240 | 0.027 | (0.187, 0.294) |
1.2 | 0.243 | 0.027 | (0.189, 0.297) |
1.4 | 0.244 | 0.028 | (0.190, 0.298) |
1.6 | 0.244 | 0.028 | (0.190, 0.297) |
(b) Applied to the occupational status data in 1965. | |||
Estimate | Standard Error | Confidence Interval | |
−0.8 | 0.096 | 0.011 | (0.074, 0.118) |
−0.6 | 0.169 | 0.019 | (0.132, 0.206) |
−0.4 | 0.224 | 0.024 | (0.178, 0.271) |
−0.2 | 0.266 | 0.027 | (0.214, 0.319) |
0 | 0.298 | 0.029 | (0.242, 0.355) |
0.2 | 0.322 | 0.030 | (0.263, 0.381) |
0.4 | 0.340 | 0.031 | (0.279, 0.401) |
0.6 | 0.353 | 0.032 | (0.291, 0.414) |
0.8 | 0.362 | 0.032 | (0.299, 0.424) |
1 | 0.367 | 0.032 | (0.305, 0.430) |
1.2 | 0.371 | 0.032 | (0.308, 0.434) |
1.4 | 0.372 | 0.032 | (0.309, 0.435) |
1.6 | 0.372 | 0.032 | (0.309, 0.435) |
(a) Cell probability table. | ||
0.10 | 0.02 | |
0.10 | 0.04 | |
0.01 | 0.02 | 0.10 |
(b) Cumulative probability table. | ||
0.02 | ||
0.06 | ||
0.01 | 0.03 |
(a) Cell probability table. | ||
0.05 | 0.02 | |
0.10 | 0.05 | 0.02 |
0.10 | 0.05 | |
(b) Cumulative probability table. | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saigusa, Y.; Teramoto, Y.; Tomizawa, S. Measure of Departure from Conditional Symmetry Based on Cumulative Probabilities for Square Contingency Tables. Symmetry 2021, 13, 1897. https://doi.org/10.3390/sym13101897
Saigusa Y, Teramoto Y, Tomizawa S. Measure of Departure from Conditional Symmetry Based on Cumulative Probabilities for Square Contingency Tables. Symmetry. 2021; 13(10):1897. https://doi.org/10.3390/sym13101897
Chicago/Turabian StyleSaigusa, Yusuke, Yuta Teramoto, and Sadao Tomizawa. 2021. "Measure of Departure from Conditional Symmetry Based on Cumulative Probabilities for Square Contingency Tables" Symmetry 13, no. 10: 1897. https://doi.org/10.3390/sym13101897
APA StyleSaigusa, Y., Teramoto, Y., & Tomizawa, S. (2021). Measure of Departure from Conditional Symmetry Based on Cumulative Probabilities for Square Contingency Tables. Symmetry, 13(10), 1897. https://doi.org/10.3390/sym13101897