Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories
Abstract
:1. Introduction
2. Two-Dimensional Index and Its Properties
2.1. Univariate Index of Weighted Geometric Mean Type
2.2. Two-Dimensional Index of Symmetry
- (1)
- The value of lies on the sides and inside the triangle at vertices , , and ;
- (2)
- if, and only if, the symmetry model holds;
- (3)
- if, and only if, the degree of asymmetry is maximum in the sense that ;
- (4)
- , where t is a constant for if, and only if, the conditional difference asymmetry model holds.
3. Approximate Confidence Region for the Proposed Index
4. Example
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Proof of Theorem
Appendix B. The Index of Symmetry
References
- Bowker, A.H. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 1948, 43, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Caussinus, H. Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de Toulouse 1965, 29, 77–183. [Google Scholar] [CrossRef]
- Saigusa, Y.; Tahata, K.; Tomizawa, S. Measure of departure from partial symmetry for square contingency tables. J. Math. Stat. 2016, 12, 152–156. [Google Scholar] [CrossRef] [Green Version]
- McCullagh, P. A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 1978, 65, 413–418. [Google Scholar] [CrossRef]
- Agresti, A. A simple diagonals-parameter symmetry and quasi-symmetry model. Stat. Probab. Lett. 1983, 1, 313–316. [Google Scholar] [CrossRef]
- Tomizawa, S.; Miyamoto, N.; Funato, R. Conditional difference asymmetry model for square contingency tables with nominal categories. J. Appl. Stat. 2004, 31, 271–277. [Google Scholar] [CrossRef]
- Yule, G.U. On the association of attributes in statistics. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1900, 194, 257–319. [Google Scholar]
- Yule, G.U. On the methods of measuring association between two attributes. J. R. Stat. Soc. 1912, 75, 579–652. [Google Scholar] [CrossRef] [Green Version]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Goodman, L.A.; Kruskal, W.H. Measures of association for cross classifications. J. Am. Stat. Assoc. 1954, 49, 732–764. [Google Scholar]
- Bishop, Y.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analysis: Theory and Practice; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Tomizawa, S.; Seo, T.; Yamamoto, H. Power-divergence-type measure of departure from symmetry for square contingency tables that have nominal categories. J. Appl. Stat. 1998, 25, 387–398. [Google Scholar] [CrossRef]
- Tomizawa, S.; Miyamoto, N.; Hatanaka, Y. Measure of asymmetry for square contingency tables having ordered categories. Aust. N. Z. J. Stat. 2001, 43, 335–349. [Google Scholar] [CrossRef]
- Ando, S.; Tahata, K.; Tomizawa, S. A bivariate index vector for measuring departure from double symmetry in square contingency tables. Adv. Data Anal. Classif. 2019, 13, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Ando, S. Directional index for measuring global symmetry in square tables. J. Stat. Theory Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Patil, G.; Taillie, C. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 1982, 77, 548–561. [Google Scholar] [CrossRef]
- Hashimoto, K. Gendai Nihon no Kaikyuu Kouzou (Class Structure in Modern Japan: Theory, Method and Quantitative Analysis); Toshindo Press: Tokyo, Japan, 1999. (In Japanese) [Google Scholar]
- Hashimoto, K. Class Structure in Contemporary Japan; Trans Pacific Press: Melbourne, Australia, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momozaki, T.; Nakagawa, T.; Ishii, A.; Saigusa, Y.; Tomizawa, S. Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories. Symmetry 2021, 13, 2031. https://doi.org/10.3390/sym13112031
Momozaki T, Nakagawa T, Ishii A, Saigusa Y, Tomizawa S. Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories. Symmetry. 2021; 13(11):2031. https://doi.org/10.3390/sym13112031
Chicago/Turabian StyleMomozaki, Tomotaka, Tomoyuki Nakagawa, Aki Ishii, Yusuke Saigusa, and Sadao Tomizawa. 2021. "Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories" Symmetry 13, no. 11: 2031. https://doi.org/10.3390/sym13112031
APA StyleMomozaki, T., Nakagawa, T., Ishii, A., Saigusa, Y., & Tomizawa, S. (2021). Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories. Symmetry, 13(11), 2031. https://doi.org/10.3390/sym13112031