On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ
Abstract
:1. Introduction
2. Preliminaries
3. Convergence Results of
4. Graphs and Error Estimation Tables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lupaş, A. A q-analogue of the Bernstein operator. Semin. Numer. Stat. Calculus 1987, 9, 85–92. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Karahan, D.; Izgi, A. On Approximation Properties of Generalized q-Bernstein Operators. Numer. Funct. Anal. Optim. 2018, 39, 990–998. [Google Scholar] [CrossRef]
- Oruç, H.; Phillips, G.M. q-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 2003, 151, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Khan, A. Generalized q-Bernstein-Schurer operators and some approximation theorems. J. Funct. Spaces. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A. On pointwise convergence of q-Bernstein operators and their q-derivatives. Numer. Funct. Anal. Optim. 2015, 36, 287–304. [Google Scholar] [CrossRef]
- Aslan, R.; İzgi, A. Some approximation results on modified q-Bernstein operators. J. Math. Anal. 2020, 11, 58–70. [Google Scholar]
- Mahmudov, N.I. The moments for q-Bernstein operators in the case 0 < q < 1. Numer. Algorithms 2010, 53, 439–450. [Google Scholar]
- Agratini, O. On certain q-analogues of the Bernstein operators. Carpathian J. Math. 2008, 281–286. [Google Scholar]
- Ghomanjani, F.; Shateyi, S. A new approach for solving Bratu’s problem. Demonstr. Math. 2019, 52, 336–346. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
- Alotaibi, A.; Özger, F.; Mohiuddine, S.A.; Alghamdi, M.A. Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function. Adv. Differ. Equ. 2021, 2021, 13. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Approximation properties and error estimation of q-Bernstein shifted operators. Numer. Algorithms 2019, 84, 1–21. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, I.A.; Duran, U.; Acikgoz, M. Apostol type (p,q)-Frobenius–Eulerian polynomials and numbers. Afr. Mat. 2021, 32, 115–130. [Google Scholar] [CrossRef]
- Kang, J.Y.; Khan, W.A. A new class of q-Hermite-based Apostol type Frobenius Genocchi polynomials. Commun. Korean Math. Soc. 2020, 35, 759–771. [Google Scholar]
- Khan, W.A.; Nisar, K.S.; Baleanu, D. A note on (p,q)-analogue type of Fubini numbers and polynomials. AIMS Math. 2020, 5, 2743–2757. [Google Scholar] [CrossRef]
- Farouki, R.T. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided Geometr. Design 2012, 29, 379–419. [Google Scholar] [CrossRef]
- Khan, K.; Lobiyal, D.K. Bézier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Khan, K.; Lobiyal, D.K.; Kılıçman, A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerb. J. Math. 2019, 9, 3–21. [Google Scholar]
- Farin, G. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Sederberg, T.W. Computer Aided Geometric Design. 2012. Available online: https://scholarsarchive.byu.edu/facpub/1/ (accessed on 1 September 2021).
- Ye, Z.; Long, X.; Zeng, X.M. Adjustment algorithms for Bézier curve and surface. In Proceedings of the International Conference on 5th Computer Science and Education, Hefei, China, 24–27 August 2010. [Google Scholar]
- Cai, Q.-B.; Zhou, G.; Li, J. Statistical approximation properties of λ-Bernstein operators based on q-integers. Open Math. 2019, 17, 487–498. [Google Scholar] [CrossRef]
- Acu, A.M.; Manav, N.; Sofonea, D.F. Approximation properties of λ-Kantorovich operators. J. Inequal. Appl. 2018, 2018, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Özger, F. Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two variables. Numer. Funct. Anal. Optim. 2020, 41, 1990–2006. [Google Scholar] [CrossRef]
- Mursaleen, M.; Al-Abied, A.A.H.; Salman, M.A. Chlodowsky type (λ,q)-Bernstein-Stancu operators. Azerb. J. Math. 2020, 10, 75–101. [Google Scholar]
- Rahman, S.; Mursaleen, M.; Acu, A.M. Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots. Math. Meth. Appl. Sci. 2019, 42, 4042–4053. [Google Scholar] [CrossRef]
- Cai, Q.-B.; Lian, B.Y.; Zhou, G. Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 61. [Google Scholar] [CrossRef] [PubMed]
- Özger, F. Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators. Filomat 2019, 33, 3473–3486. [Google Scholar] [CrossRef]
- Özger, F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 376–393. [Google Scholar] [CrossRef]
- Aslan, R. Some approximation results on λ-Szasz-Mirakjan-Kantorovich operators. FUJMA. 2021, 4, 150–158. [Google Scholar]
- Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein-Schurer operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ansari, K.J.; Özger, F.; Ödemiş Özger, Z. A link between approximation theory and summability methods via four-dimensional infinite matrices. Mathematics 2021, 9, 1895. [Google Scholar] [CrossRef]
- Özger, F.; Demirci, K.; Yıldız, S. Approximation by Kantorovich variant of λ-Schurer operators and related numerical results. In Topics in Contemporary Mathematical Analysis and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 77–94. ISBN 9780367532666. [Google Scholar]
- Cai, Q.-B.; Torun, G.; Dinlemez Kantar, Ü. Approximation Properties of Generalized λ-Bernstein-Stancu-Type Operators. J. Math. 2021, 2021, 5590439. [Google Scholar] [CrossRef]
- Ghomanjani, F.; Farahi, M.H.; Kılıçman, A.; Kamyad, A.V.; Pariz, N. Bezier curves based numerical solutions of delay systems with inverse time. Math. Probl. Eng. 2014, 2014, 602641. [Google Scholar] [CrossRef]
- Cai, Q.-B.; Cheng, W.T. Convergence of λ-Bernstein operators based on (p,q)-integers. J. Inequal. Appl. 2020, 2020, 35. [Google Scholar] [CrossRef] [Green Version]
- Micchelli, C. The saturation class and iterates of Bernstein polynomials. J. Approx. Theory 1973, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Campiti, M. Convergence of iterated Boolean-type sums and their iterates. Numer. Funct. Anal. Optim. 2018, 39, 1054–1063. [Google Scholar] [CrossRef]
- Occorsio, D.; Russo, M.G.; Themistoclakis, W. Some numerical applications of generalized Bernstein operators. Constr. Math. Anal. 2021, 4, 186–214. [Google Scholar]
- Izgi, A. Approximation by a class of new type Bernstein polynomials of one and two variables. Glob. J. Pure Appl. Math. 2012, 8, 55–71. [Google Scholar]
- Korovkin, P.P. On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR. 1953, 90, 961–964. [Google Scholar]
- Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and Its Applications; Walter de Gruyter: Berlin, Germany, 2011; Volume 17. [Google Scholar]
q | ||||
---|---|---|---|---|
0.98 | 0.550594325 | 0.306394389 | 0.213534145 | |
1 | 0.998 | 0.504069181 | 0.222940932 | 0.094770016 |
0.9998 | 0.499424268 | 0.215224376 | 0.085356093 | |
0.98 | 0.560196708 | 0.308330384 | 0.214499941 | |
0 | 0.998 | 0.510708683 | 0.223434415 | 0.094830635 |
0.9998 | 0.505790803 | 0.215616670 | 0.085380496 | |
0.98 | 0.569799091 | 0.310266384 | 0.215465740 | |
−1 | 0.998 | 0.517348184 | 0.223927891 | 0.094891256 |
0.9998 | 0.512157335 | 0.216008960 | 0.085404893 |
y | |||
---|---|---|---|
0.1 | 0.0064703691 | 0.0066166279 | 0.0064908234 |
0.2 | 0.0178590518 | 0.0179015902 | 0.0179216560 |
0.3 | 0.0202453681 | 0.0202461350 | 0.0203259325 |
0.4 | 0.0098313720 | 0.0098337279 | 0.0098768282 |
0.5 | 0.0059935717 | 0.0060039098 | 0.0060271492 |
0.6 | 0.0166406345 | 0.0166436305 | 0.0167571955 |
0.7 | 0.0168553088 | 0.0168781498 | 0.0170138238 |
0.8 | 0.0094123445 | 0.0094737845 | 0.0095471335 |
0.9 | 0.0017028663 | 0.0017979154 | 0.0017552501 |
y | |||
---|---|---|---|
0.1 | 0.0395067635 | 0.0403109983 | 0.0421575117 |
0.2 | 0.0820586872 | 0.0820251352 | 0.0880156832 |
0.3 | 0.0404867906 | 0.0401846539 | 0.0436964312 |
0.4 | 0.0578630516 | 0.0580685817 | 0.0636539124 |
0.5 | 0.1098004706 | 0.1099528891 | 0.1228649275 |
0.6 | 0.0618640005 | 0.0620901607 | 0.0712086537 |
0.7 | 0.0266496768 | 0.0264485480 | 0.0327246974 |
0.8 | 0.0571950380 | 0.0572345301 | 0.0789298769 |
0.9 | 0.0166758581 | 0.0169176476 | 0.0381883355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.-B.; Aslan, R. On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ. Symmetry 2021, 13, 1919. https://doi.org/10.3390/sym13101919
Cai Q-B, Aslan R. On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ. Symmetry. 2021; 13(10):1919. https://doi.org/10.3390/sym13101919
Chicago/Turabian StyleCai, Qing-Bo, and Reşat Aslan. 2021. "On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ" Symmetry 13, no. 10: 1919. https://doi.org/10.3390/sym13101919
APA StyleCai, Q. -B., & Aslan, R. (2021). On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ. Symmetry, 13(10), 1919. https://doi.org/10.3390/sym13101919