Cold Particle Dark Matter
Abstract
:1. Introduction
2. Weakly Coupled Thermal Relics
2.1. Computing the Relic Density
2.2. Freeze-Out
2.3. Freeze-In
2.4. Dark Freeze-Out and Reannihilation
3. Dark Sectors and Portals
3.1. Cosmology of Hidden Sectors
3.2. Directly Coupled Dark Sectors
3.3. Portals between Dark and Light Sectors
3.3.1. The Higgs Portal
3.3.2. The Vector Portal
3.3.3. Axion Portal
3.3.4. Neutrino Portal
4. Strongly Coupled Composite Dark Matter
4.1. General Features and Examples of Composite Dark Matter Candidates
4.1.1. Dark Pions
4.1.2. Dark Quarkonia and Dark Baryons
4.1.3. Dark Glueballs
5. Experimental and Observational Constraints
5.1. Collider Searches
5.2. Direct and Indirect Detection
6. Conclusions
Funding
Conflicts of Interest
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in 2021, 652, C4. [Google Scholar] [CrossRef] [Green Version]
- Bergström, L. Nonbaryonic dark matter: Observational evidence and detection methods. Rep. Prog. Phys. 2000, 63, 793. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef] [Green Version]
- de Swart, J.; Bertone, G.; van Dongen, J. How Dark Matter Came to Matter. Nat. Astron. 2017, 1, 0059. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kohri, K.; Sugiyama, N. MeV scale reheating temperature and thermalization of neutrino background. Phys. Rev. D 2000, 62, 023506. [Google Scholar] [CrossRef] [Green Version]
- Hannestad, S. What is the lowest possible reheating temperature? Phys. Rev. D 2004, 70, 043506. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Kawasaki, M.; Takahashi, F. The Oscillation effects on thermalization of the neutrinos in the Universe with low reheating temperature. Phys. Rev. D 2005, 72, 043522. [Google Scholar] [CrossRef] [Green Version]
- De Bernardis, F.; Pagano, L.; Melchiorri, A. New constraints on the reheating temperature of the universe after WMAP-5. Astropart. Phys. 2008, 30, 192–195. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Ann. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 2004, 70, 083509, Erratum in 2005, 71, 069901. [Google Scholar] [CrossRef]
- Skordis, C.; Mota, D.F.; Ferreira, P.G.; Boehm, C. Large Scale Structure in Bekenstein’s theory of relativistic Modified Newtonian Dynamics. Phys. Rev. Lett. 2006, 96, 011301. [Google Scholar] [CrossRef] [Green Version]
- Zuntz, J.; Zlosnik, T.G.; Bourliot, F.; Ferreira, P.G.; Starkman, G.D. Vector field models of modified gravity and the dark sector. Phys. Rev. D 2010, 81, 104015. [Google Scholar] [CrossRef] [Green Version]
- Lisanti, M.; Moschella, M.; Outmezguine, N.J.; Slone, O. Testing Dark Matter and Modifications to Gravity using Local Milky Way Observables. Phys. Rev. D 2019, 100, 083009. [Google Scholar] [CrossRef] [Green Version]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef]
- Bernal, N.; Heikinheimo, M.; Tenkanen, T.; Tuominen, K.; Vaskonen, V. The Dawn of FIMP Dark Matter: A Review of Models and Constraints. Int. J. Mod. Phys. A 2017, 32, 1730023. [Google Scholar] [CrossRef]
- Nussinov, S. Technocosmology: Could a technibaryon excess provide a ‘natural’ missing mass candidate? Phys. Lett. B 1985, 165, 55–58. [Google Scholar] [CrossRef]
- Kribs, G.D.; Neil, E.T. Review of strongly-coupled composite dark matter models and lattice simulations. Int. J. Mod. Phys. A 2016, 31, 1643004. [Google Scholar] [CrossRef]
- Heikinheimo, M.; Tuominen, K.; Langæble, K. Hidden strongly interacting massive particles. Phys. Rev. D 2018, 97, 095040. [Google Scholar] [CrossRef] [Green Version]
- Boucenna, S.M.; Krauss, M.B.; Nardi, E. Minimal Asymmetric Dark Matter. Phys. Lett. B 2015, 748, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Aad, G.; Abajyan, T.; AbbottJ, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter. Astrophys. J. 2004, 604, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Kraljic, D.; Sarkar, S. How rare is the Bullet Cluster (in a ΛCDM universe)? J. Cosmol. Astropart. Phys. 2015, 04, 050. [Google Scholar] [CrossRef] [Green Version]
- Randall, S.W.; Markevitch, M.; Clowe, D.; Gonzalez, A.H.; Bradac, M. Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56. Astrophys. J. 2008, 679, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Heikinheimo, M.; Tenkanen, T.; Tuominen, K.; Vaskonen, V. Observational Constraints on Decoupled Hidden Sectors. Phys. Rev. D 2016, 94, 063506, Erratum in 2017, 96, 109902. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J. Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 2002, 88, 091304. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Jedamzik, K.; March-Russell, J.; West, S.M. Freeze-In Production of FIMP Dark Matter. J. High Energy Phys. 2010, 3, 80. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.W.; Turner, M.S. The Early Universe. Front. Phys. 1990, 69, 1–547. [Google Scholar]
- McDonald, J. Gauge singlet scalars as cold dark matter. Phys. Rev. D 1994, 50, 3637–3649. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; Pospelov, M.; ter Veldhuis, T. The Minimal model of nonbaryonic dark matter: A Singlet scalar. Nucl. Phys. B 2001, 619, 709–728. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M.; Kainulainen, K. Electroweak baryogenesis and dark matter from a singlet Higgs. J. Cosmol. Astropart. Phys. 2013, 01, 012. [Google Scholar] [CrossRef]
- Zeldovic, Y.B.; Okun, L.B.; Pikelner, S.B. Quarks, astrophysical and physico-chemical aspects. Phys. Lett. 1965, 17, 164–166. [Google Scholar] [CrossRef]
- Lee, B.W.; Weinberg, S. Cosmological Lower Bound on Heavy Neutrino Masses. Phys. Rev. Lett. 1977, 39, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Gondolo, P.; Gelmini, G. Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 1991, 360, 145–179. [Google Scholar] [CrossRef]
- Griest, K.; Seckel, D. Three exceptions in the calculation of relic abundances. Phys. Rev. D 1991, 43, 3191–3203. [Google Scholar] [CrossRef] [PubMed]
- Hambye, T. Hidden vector dark matter. J. High Energy Phys. 2009, 01, 028. [Google Scholar] [CrossRef]
- D’Agnolo, R.T.; Pappadopulo, D.; Ruderman, J.T. Fourth Exception in the Calculation of Relic Abundances. Phys. Rev. Lett. 2017, 119, 061102. [Google Scholar] [CrossRef] [Green Version]
- Enqvist, K.; Nurmi, S.; Tenkanen, T.; Tuominen, K. Standard Model with a real singlet scalar and inflation. J. Cosmol. Astropart. Phys. 2014, 08, 035. [Google Scholar] [CrossRef] [Green Version]
- Petraki, K.; Husenko, A. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D 2008, 77, 065014. [Google Scholar] [CrossRef] [Green Version]
- Dev, P.S.B.; Mazumdar, A.; Qutub, S. Connection between dark matter abundance and primordial tensor perturbations. arXiv 2014, arXiv:1412.3041. [Google Scholar]
- Nurmi, S.; Tenkanen, T.; Tuominen, K. Inflationary Imprints on Dark Matter. J. Cosmol. Astropart. Phys. 2015, 11, 001. [Google Scholar] [CrossRef] [Green Version]
- Kainulainen, K.; Nurmi, S.; Tenkanen, T.; Tuominen, K.; Vaskonen, V. Isocurvature Constraints on Portal Couplings. J. Cosmol. Astropart. Phys. 2016, 06, 022. [Google Scholar] [CrossRef]
- Choi, K.Y.; Roszkowski, L. E-WIMPs. AIP Conf. Proc. 2005, 805, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Yaguna, C.E. An intermediate framework between WIMP, FIMP, and EWIP dark matter. J. Cosmol. Astropart. Phys. 2012, 02, 006. [Google Scholar] [CrossRef] [Green Version]
- Krauss, M.B.; Morisi, S.; Porod, W.; Winter, W. Higher Dimensional Effective Operators for Direct Dark Matter Detection. J. High Energy Phys. 2014, 2, 056. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. On concentration of relict theta particles. Yad. Fiz. 1980, 31, 1522–1528. (In Russian) [Google Scholar]
- Carlson, E.D.; Machacek, M.E.; Hall, L.J. Self-interacting dark matter. Astrophys. J. 1992, 398, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Hambye, T.; Tytgat, M.H.G. The Four Basic Ways of Creating Dark Matter Through a Portal. J. Cosmol. Astropart. Phys. 2012, 05, 034. [Google Scholar] [CrossRef] [Green Version]
- Bernal, N.; Chu, X.; Pradler, J. Simply split strongly interacting massive particles. Phys. Rev. D 2017, 95, 115023. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.J.; Boehm, C.; West, S.M.; Albornoz Vasquez, D. Regenerating WIMPs in the Light of Direct and Indirect Detection. Phys. Rev. D 2012, 86, 055018. [Google Scholar] [CrossRef] [Green Version]
- Bernal, N.; Chu, X.; Garcia-Cely, C.; Hambye, T.; Zaldivar, B. Production Regimes for Self-Interacting Dark Matter. J. Cosmol. Astropart. Phys. 2016, 03, 018. [Google Scholar] [CrossRef]
- Bernal, N.; Chu, X. Z2 SIMP Dark Matter. J. Cosmol. Astropart. Phys. 2016, 01, 006. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.; Elor, G.; Hall, L.J.; Kumar, P. Origins of Hidden Sector Dark Matter I: Cosmology. J. High Energy Phys. 2011, 03, 042. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.; Elor, G.; Hall, L.J.; Kumar, P. Origins of Hidden Sector Dark Matter II: Collider Physics. J. High Energy Phys. 2011, 03, 085. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Mena, O.; Melchiorri, A.; Silk, J. Cosmological Axion and neutrino mass constraints from Planck 2015 temperature and polarization data. Phys. Lett. B 2016, 752, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. J. Cosmol. Astropart. Phys. 2020, 01, 013. [Google Scholar] [CrossRef] [Green Version]
- Archidiacono, M.; Calabrese, E.; Melchiorri, A. The Case for Dark Radiation. Phys. Rev. D 2011, 84, 123008. [Google Scholar] [CrossRef] [Green Version]
- de Salas, P.F.; Pastor, S. Relic neutrino decoupling with flavour oscillations revisited. J. Cosmol. Astropart. Phys. 2016, 07, 051. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.H. Big Bang Nucleosynthesis: 2015. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Ackerman, L.; Buckley, M.R.; Carroll, S.M.; Kamionkowski, M. Dark Matter and Dark Radiation. Phys. Rev. D 2009, 79, 023519. [Google Scholar] [CrossRef] [Green Version]
- Knapen, S.; Lin, T.; Zurek, K.M. Light Dark Matter: Models and Constraints. Phys. Rev. D 2017, 96, 115021. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Huo, R. Visualizing Invisible Dark Matter Annihilation with the CMB and Matter Power Spectrum. Phys. Rev. D 2019, 100, 023004. [Google Scholar] [CrossRef] [Green Version]
- Moore, B. Evidence against dissipationless dark matter from observations of galaxy haloes. Nature 1994, 370, 629. [Google Scholar] [CrossRef]
- Flores, R.A.; Primack, J.R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. Lett. 1994, 427, L1–L4. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- de Blok, W.J.G. The Core-Cusp Problem. Adv. Astron. 2010, 2010, 789293. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Brook, C.; Governato, F.; Brinks, E.; Mayer, L.; de Blok, W.J.G.; Brooks, A.; Walter, F. The central slope of dark matter cores in dwarf galaxies: Simulations vs. THINGS. Astron. J. 2011, 142, 24. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.G.; Penarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 20. [Google Scholar] [CrossRef] [Green Version]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 2011, 415, L40. [Google Scholar] [CrossRef] [Green Version]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Kirby, E.N. Too Big to Fail in the Local Group. Mon. Not. R. Astron. Soc. 2014, 444, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Mac Low, M.M.; Ferrara, A. Starburst–driven mass loss from dwarf galaxies: Efficiency and metal ejection. Astrophys. J. 1999, 513, 142. [Google Scholar] [CrossRef] [Green Version]
- Governato, F.; Brook, C.; Mayer, L.; Brooks, A.; Rhee, G.; Wadsley, J.; Jonsson, P.; Willman, B.; Stinson, G.; Quinn, T.; et al. At the heart of the matter: The origin of bulgeless dwarf galaxies and Dark Matter cores. Nature 2010, 463, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Silk, J.; Nusser, A. The massive black hole-velocity dispersion relation and the halo baryon fraction: A case for positive AGN feedback. Astrophys. J. 2010, 725, 556–560. [Google Scholar] [CrossRef]
- Vera-Ciro, C.A.; Helmi, A.; Starkenburg, E.; Breddels, M.A. Not too big, not too small: The dark halos of the dwarf spheroidals in the Milky Way. Mon. Not. R. Astron. Soc. 2013, 428, 1696. [Google Scholar] [CrossRef] [Green Version]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Bower, R.G.; Crain, R.A.; Vecchia, C.D.; Furlong, M.; Helly, J.C.; Jenkins, A.; et al. The APOSTLE simulations: Solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 2016, 457, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, A.; Navarro, J.F.; Sawala, T.; Frenk, C.S.; Sales, L.V.; Oman, K.; Schaller, M.; Wang, J. The cold dark matter content of Galactic dwarf spheroidals: No cores, no failures, no problem. arXiv 2016, arXiv:1607.06479. [Google Scholar]
- Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; David, L.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys. J. 2004, 606, 819–824. [Google Scholar] [CrossRef]
- Harvey, D.; Massey, R.; Kitching, T.; Taylor, A.; Tittley, E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 2015, 347, 1462–1465. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.; Massey, R.; Eke, V. What does the Bullet Cluster tell us about self-interacting dark matter? Mon. Not. R. Astron. Soc. 2017, 465, 569–587. [Google Scholar] [CrossRef]
- Kim, S.Y.; Peter, A.H.G.; Wittman, D. In the Wake of Dark Giants: New Signatures of Dark Matter Self Interactions in Equal Mass Mergers of Galaxy Clusters. Mon. Not. R. Astron. Soc. 2017, 469, 1414–1444. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.; Massey, R.; Eke, V. Cosmic particle colliders: Simulations of self-interacting dark matter with anisotropic scattering. Mon. Not. R. Astron. Soc. 2017, 467, 4719–4730. [Google Scholar] [CrossRef] [Green Version]
- Wittman, D.; Golovich, N.; Dawson, W.A. The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters. Astrophys. J. 2018, 869, 104. [Google Scholar] [CrossRef]
- Massey, R.; Williams, L.; Smit, R.; Swinbank, M.; Kitching, T.D.; Harvey, D.; Jauzac, M.; Israel, H.; Clowe, D.; Edge, A.; et al. The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827. Mon. Not. R. Astron. Soc. 2015, 449, 3393–3406. [Google Scholar] [CrossRef]
- Kahlhoefer, F.; Schmidt-Hoberg, K.; Kummer, J.; Sarkar, S. On the interpretation of dark matter self-interactions in Abell 3827. Mon. Not. R. Astron. Soc. 2015, 452, L54–L58. [Google Scholar] [CrossRef]
- Taylor, P.; Massey, R.; Jauzac, M.; Courbin, F.; Harvey, D.; Joseph, R.; Robertson, A. A test for skewed distributions of dark matter and a possible detection in galaxy cluster Abell 3827. Mon. Not. R. Astron. Soc. 2017, 468, 5004–5013. [Google Scholar] [CrossRef] [Green Version]
- Tulin, S.; Yu, H.B.; Zurek, K.M. Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 2013, 87, 115007. [Google Scholar] [CrossRef] [Green Version]
- Kaplinghat, M.; Tulin, S.; Yu, H.B. Direct Detection Portals for Self-interacting Dark Matter. Phys. Rev. D 2014, 89, 035009. [Google Scholar] [CrossRef] [Green Version]
- Huo, R.; Kaplinghat, M.; Pan, Z.; Yu, H.B. Signatures of Self-Interacting Dark Matter in the Matter Power Spectrum and the CMB. Phys. Lett. B 2018, 783, 76–81. [Google Scholar] [CrossRef]
- Egana-Ugrinovic, D.; Essig, R.; Gift, D.; LoVerde, M. The Cosmological Evolution of Self-interacting Dark Matter. J. Cosmol. Astropart. Phys. 2021, 05, 013. [Google Scholar] [CrossRef]
- Boehm, C.; Dolan, M.J.; McCabe, C. A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck. J. Cosmol. Astropart. Phys. 2013, 08, 041. [Google Scholar] [CrossRef] [Green Version]
- Nollett, K.M.; Steigman, G. BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs. Phys. Rev. D 2014, 89, 083508. [Google Scholar] [CrossRef] [Green Version]
- Slatyer, T.R.; Padmanabhan, N.; Finkbeiner, D.P. CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch. Phys. Rev. D 2009, 80, 043526. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, L.; Hooper, D. Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope. arXiv 2009, arXiv:0910.2998. [Google Scholar]
- Abazajian, K.N.; Kaplinghat, M. Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission. Phys. Rev. D 2012, 86, 083511, Erratum in 2013, 87, 129902. [Google Scholar] [CrossRef] [Green Version]
- Daylan, T.; Finkbeiner, D.P.; Hooper, D.; Linden, T.; Portillo, S.K.N.; Rodd, N.L.; Slatyer, T.R. The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter. Phys. Dark Univ. 2016, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Liang, Y.F.; Huang, X.; Li, X.; Fan, Y.Z.; Feng, L.; Chang, J. GeV excess in the Milky Way: The role of diffuse galactic gamma-ray emission templates. Phys. Rev. D 2015, 91, 123010. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Cholis, I.; Weniger, C. Background Model Systematics for the Fermi GeV Excess. J. Cosmol. Astropart. Phys. 2015, 3, 38. [Google Scholar] [CrossRef]
- Ajello, M.; Albert, A.; Atwood, W.B.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. Fermi-LAT Observations of High-Energy γ-Ray Emission Toward the Galactic Center. Astrophys. J. 2016, 819, 44. [Google Scholar] [CrossRef] [Green Version]
- Linden, T.; Rodd, N.L.; Safdi, B.R.; Slatyer, T.R. High-energy tail of the Galactic Center gamma-ray excess. Phys. Rev. D 2016, 94, 103013. [Google Scholar] [CrossRef] [Green Version]
- Petrović, J.; Serpico, P.D.; Zaharijaš, G. Galactic Center gamma-ray “excess” from an active past of the Galactic Centre? J. Cosmol. Astropart. Phys. 2014, 10, 052. [Google Scholar] [CrossRef]
- Calore, F.; di Mauro, M.; Donato, F. Diffuse gamma-ray emission from galactic pulsars. Astrophys. J. 2014, 796, 1. [Google Scholar] [CrossRef] [Green Version]
- Cholis, I.; Hooper, D.; Linden, T. Challenges in Explaining the Galactic Center Gamma-Ray Excess with Millisecond Pulsars. J. Cosmol. Astropart. Phys. 2015, 06, 043. [Google Scholar] [CrossRef] [Green Version]
- Petrović, J.; Serpico, P.D.; Zaharijas, G. Millisecond pulsars and the Galactic Center gamma-ray excess: The importance of luminosity function and secondary emission. J. Cosmol. Astropart. Phys. 2015, 02, 023. [Google Scholar] [CrossRef] [Green Version]
- Cholis, I.; Evoli, C.; Calore, F.; Linden, T.; Weniger, C.; Hooper, D. The Galactic Center GeV Excess from a Series of Leptonic Cosmic-Ray Outbursts. J. Cosmol. Astropart. Phys. 2015, 12, 005. [Google Scholar] [CrossRef] [Green Version]
- Macias, O.; Gordon, C.; Crocker, R.M.; Coleman, B.; Paterson, D.; Horiuchi, S.; Pohl, M. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess. Nat. Astron. 2018, 2, 387–392. [Google Scholar] [CrossRef]
- Calore, F.; Cholis, I.; McCabe, C.; Weniger, C. A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics. Phys. Rev. D 2015, 91, 063003. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Calore, F.; Caron, S.; Ruiz, R.; Kim, J.S.; Trotta, R.; Weniger, C. Global analysis of the pMSSM in light of the Fermi GeV excess: Prospects for the LHC Run-II and astroparticle experiments. J. Cosmol. Astropart. Phys. 2016, 04, 037. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Anderson, B.; Bechtol, K.; Drlica-Wagner, A.; Meyer, M.; Sánchez-Conde, M.; Strigari, L.; Wood, M.; Abbott, T.M.C.; Abdalla, F.B.; et al. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT. Astrophys. J. 2017, 834, 110. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2016, 117, 091103. [Google Scholar] [CrossRef]
- Cui, M.Y.; Yuan, Q.; Tsai, Y.L.S.; Fan, Y.Z. Novel Dark Matter Constraints from Antiprotons in Light of AMS-02. Phys. Rev. Lett. 2017, 118, 191102. [Google Scholar] [CrossRef]
- Cui, M.Y.; Yuan, Q.; Tsai, Y.L.S.; Fan, Y.Z. Possible dark matter annihilation signal in the AMS-02 antiproton data. Phys. Rev. Lett. 2017, 118, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.J.; Wei, C.C.; Wu, Y.L.; Zhang, W.H.; Zhou, Y.F. Antiprotons from dark matter annihilation through light mediators and a possible excess in AMS-02 p¯/p data. Phys. Rev. D 2017, 95, 063021. [Google Scholar] [CrossRef] [Green Version]
- Li, T. Simplified dark matter models in the light of AMS-02 antiproton data. J. High Energy Phys. 2017, 04, 112. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhang, H.H. Dark Matter Search in Space: Combined Analysis of Cosmic Ray Antiproton-to-Proton Flux Ratio and Positron Flux Measured by AMS-02. Astrophys. J. 2018, 858, 116. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.B.; Wu, Y.L.; Zhou, Y.F. Astrophysical background and dark matter implication based on latest AMS-02 data. Astrophys. J. 2020, 901, 80. [Google Scholar] [CrossRef]
- Jia, L.B. Interpretation of the gamma-ray excess and AMS-02 antiprotons: Velocity dependent dark matter annihilations. Phys. Rev. D 2017, 96, 055009. [Google Scholar] [CrossRef] [Green Version]
- Cuoco, A.; Heisig, J.; Korsmeier, M.; Krämer, M. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays. J. Cosmol. Astropart. Phys. 2017, 10, 053. [Google Scholar] [CrossRef] [Green Version]
- di Mauro, M.; Winkler, M.W. Multimessenger constraints on the dark matter interpretation of the Fermi-LAT Galactic center excess. Phys. Rev. D 2021, 103, 123005. [Google Scholar] [CrossRef]
- Giesen, G.; Boudaud, M.; Génolini, Y.; Poulin, V.; Cirelli, M.; Salati, P.; Serpico, P.D. AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter. J. Cosmol. Astropart. Phys. 2015, 9, 23. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 2009, 458, 607–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Anderhub, H.; Arruda, L.; Azzarello, P.; Bachlechner, A.; et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV. Phys. Rev. Lett. 2013, 110, 141102. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.; Blasi, P.; Serpico, P.D. Pulsars as the Sources of High Energy Cosmic Ray Positrons. J. Cosmol. Astropart. Phys. 2009, 1, 25. [Google Scholar] [CrossRef]
- di Mauro, M.; Donato, F.; Fornengo, N.; Lineros, R.; Vittino, A. Interpretation of AMS-02 electrons and positrons data. J. Cosmol. Astropart. Phys. 2014, 04, 006. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Carena, M.; Lykken, J. The PAMELA excess from neutralino annihilation in the NMSSM. Phys. Rev. D 2009, 80, 055004. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Chiang, C.W.; Nomura, T. Dark matter for excess of AMS-02 positrons and antiprotons. Phys. Lett. B 2015, 747, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Silveira, V.; Zee, A. Scalar phantoms. Phys. Lett. B 1985, 161, 136–140. [Google Scholar] [CrossRef]
- Patt, B.; Wilczek, F. Higgs-field portal into hidden sectors. arXiv 2006, arXiv:hep-ph/0605188. [Google Scholar]
- Alanne, T.; Heikinheimo, M.; Keus, V.; Koivunen, N.; Tuominen, K. Direct and indirect probes of Goldstone dark matter. Phys. Rev. D 2019, 99, 075028. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Lee, K.Y. The Minimal model of fermionic dark matter. Phys. Rev. D 2007, 75, 115012. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Lee, K.Y.; Shin, S. Singlet fermionic dark matter. J. High Energy Phys. 2008, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Hambye, T.; Tytgat, M.H.G. Confined hidden vector dark matter. Phys. Lett. B 2010, 683, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Jaeckel, J. A force beyond the Standard Model - Status of the quest for hidden photons. Frascati Phys. Ser. 2012, 56, 172–192. [Google Scholar]
- Fabbrichesi, M.; Gabrielli, E.; Lanfranchi, G. The Dark Photon; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- McDermott, S.D.; Yu, H.B.; Zurek, K.M. Turning off the Lights: How Dark is Dark Matter? Phys. Rev. D 2011, 83, 063509. [Google Scholar] [CrossRef] [Green Version]
- Dvorkin, C.; Blum, K.; Kamionkowski, M. Constraining Dark Matter-Baryon Scattering with Linear Cosmology. Phys. Rev. D 2014, 89, 023519. [Google Scholar] [CrossRef] [Green Version]
- Caputo, A.; Millar, A.J.; O’Hare, C.A.J.; Vitagliano, E. Dark photon limits: A cookbook. arXiv 2021, arXiv:2105.04565. [Google Scholar]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. Sov. J. Nucl. Phys. 1980, 31, 260. (In Russian) [Google Scholar]
- Kim, J.E. Weak Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A Cosmological Bound on the Invisible Axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Choi, K.; Im, S.H.; Shin, C.S. Recent progress in physics of axions or axion-like particles. Annu. Rev. Nucl. Part. Sci. 2021. [Google Scholar] [CrossRef]
- Alves, D.S.M.; Behbahani, S.R.; Schuster, P.; Wacker, J.G. The Cosmology of Composite Inelastic Dark Matter. J. High Energy Phys. 2010, 06, 113. [Google Scholar] [CrossRef] [Green Version]
- Kribs, G.D.; Roy, T.S.; Terning, J.; Zurek, K.M. Quirky Composite Dark Matter. Phys. Rev. D 2010, 81, 095001. [Google Scholar] [CrossRef] [Green Version]
- Garcia Garcia, I.; Lasenby, R.; March-Russell, J. Twin Higgs WIMP Dark Matter. Phys. Rev. D 2015, 92, 055034. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Hill, R.J. Weakly Interacting Stable Pions. Phys. Rev. D 2010, 82, 111701. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Melić, B.; Wudka, J. Pionic Dark Matter. J. High Energy Phys. 2014, 2, 115. [Google Scholar] [CrossRef] [Green Version]
- Hur, T.; Jung, D.W.; Ko, P.; Lee, J.Y. Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector. Phys. Lett. B 2011, 696, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Heikinheimo, M.; Racioppi, A.; Raidal, M.; Spethmann, C.; Tuominen, K. Physical Naturalness and Dynamical Breaking of Classical Scale Invariance. Mod. Phys. Lett. A 2014, 29, 1450077. [Google Scholar] [CrossRef]
- Englert, C.; Jaeckel, J.; Khoze, V.V.; Spannowsky, M. Emergence of the Electroweak Scale through the Higgs Portal. J. High Energy Phys. 2013, 4, 060. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, M.; Pomarol, A.; Riva, F.; Urbano, A. Composite Scalar Dark Matter. J. High Energy Phys. 2012, 07, 015. [Google Scholar] [CrossRef] [Green Version]
- Wess, J.; Zumino, B. Consequences of anomalous Ward identities. Phys. Lett. B 1971, 37, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Global Aspects of Current Algebra. Nucl. Phys. B 1983, 223, 422–432. [Google Scholar] [CrossRef]
- Cai, H.; Cacciapaglia, G. Singlet dark matter in the SU(6)/SO(6) composite Higgs model. Phys. Rev. D 2021, 103, 055002. [Google Scholar] [CrossRef]
- Alanne, T.; Gertov, H.; Sannino, F.; Tuominen, K. Elementary Goldstone Higgs boson and dark matter. Phys. Rev. D 2015, 91, 095021. [Google Scholar] [CrossRef] [Green Version]
- Alanne, T.; Gertov, H.; Meroni, A.; Sannino, F. Vacuum alignment with and without elementary scalars. Phys. Rev. D 2016, 94, 075015. [Google Scholar] [CrossRef] [Green Version]
- Buckley, M.R.; Neil, E.T. Thermal dark matter from a confining sector. Phys. Rev. D 2013, 87, 043510. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.S.M.; Behbahani, S.R.; Schuster, P.; Wacker, J.G. Composite Inelastic Dark Matter. Phys. Lett. B 2010, 692, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Tucker-Smith, D.; Weiner, N. Inelastic dark matter. Phys. Rev. D 2001, 64, 043502. [Google Scholar] [CrossRef] [Green Version]
- Tucker-Smith, D.; Weiner, N. The Status of inelastic dark matter. Phys. Rev. D 2005, 72, 063509. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Kribs, G.D.; Tucker-Smith, D.; Weiner, N. Inelastic Dark Matter in Light of DAMA/LIBRA. Phys. Rev. D 2009, 79, 043513. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Luty, M.A. Macroscopic Strings and ’Quirks’ at Colliders. J. High Energy Phys. 2009, 11, 065. [Google Scholar] [CrossRef] [Green Version]
- Peskin, M.E. The Alignment of the Vacuum in Theories of Technicolor. Nucl. Phys. B 1980, 175, 197–233. [Google Scholar] [CrossRef]
- Harnik, R.; Kribs, G.D.; Martin, A. Quirks at the Tevatron and Beyond. Phys. Rev. D 2011, 84, 035029. [Google Scholar] [CrossRef] [Green Version]
- Chivukula, R.S.; Walker, T.P. TECHNICOLOR COSMOLOGY. Nucl. Phys. B 1990, 329, 445–463. [Google Scholar] [CrossRef]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark Matter from new Technicolor Theories. Phys. Rev. D 2006, 74, 095008. [Google Scholar] [CrossRef] [Green Version]
- Barr, S.M.; Chivukula, R.S.; Farhi, E. Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe. Phys. Lett. B 1990, 241, 387–391. [Google Scholar] [CrossRef]
- Kaplan, D.B. A Single explanation for both the baryon and dark matter densities. Phys. Rev. Lett. 1992, 68, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Faraggi, A.E.; Pospelov, M. Selfinteracting dark matter from the hidden heterotic string sector. Astropart. Phys. 2002, 16, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Honorez, L.; Schwetz, T.; Zupan, J. Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV. Phys. Lett. B 2012, 716, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Djouadi, A.; Falkowski, A.; Mambrini, Y.; Quevillon, J. Direct Detection of Higgs-Portal Dark Matter at the LHC. Eur. Phys. J. C 2013, 73, 2455. [Google Scholar] [CrossRef] [Green Version]
- Brooijmans, G.; Gripaios, B.; Moortgat, F.; Santiago, J.; Skands, P.; Albornoz Vásquez, D.; Allanach, B.C.; Alloul, A.; Arbey, A.; Azatov, A.; et al. Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report. arXiv 2012, arXiv:1203.1488. [Google Scholar]
- Arcadi, G.; Covi, L. Minimal Decaying Dark Matter and the LHC. J. Cosmol. Astropart. Phys. 2013, 08, 005. [Google Scholar] [CrossRef] [Green Version]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb−1 of proton–proton collision data at = 13 TeV. Phys. Lett. B 2016, 760, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for long-lived charged particles in proton-proton collisions at = 13 TeV. Phys. Rev. D 2016, 94, 112004. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, E.; Yaguna, C.E.; Zapata, O. FIMP realization of the scotogenic model. J. Cosmol. Astropart. Phys. 2014, 07, 015. [Google Scholar] [CrossRef]
- Yaser Ayazi, S.; Firouzabadi, S.M.; Zakeri, S.P. Freeze-in production of Fermionic Dark Matter with Pseudo-scalar and Phenomenological Aspects. J. Phys. G 2016, 43, 095006. [Google Scholar] [CrossRef] [Green Version]
- Hessler, A.G.; Ibarra, A.; Molinaro, E.; Vogl, S. Probing the scotogenic FIMP at the LHC. J. High Energy Phys. 2017, 1, 100. [Google Scholar] [CrossRef]
- Ilnicka, A.; Robens, T.; Stefaniak, T. Constraining Extended Scalar Sectors at the LHC and beyond. Mod. Phys. Lett. A 2018, 33, 1830007. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector. J. High Energy Phys. 2015, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Searches for invisible decays of the Higgs boson in pp collisions at = 7, 8, and 13 TeV. J. High Energy Phys. 2017, 2, 135. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; He, H.L.; Incicchitti, A.; Kuang, H.H.; Ma, X.H.; et al. New results from DAMA/LIBRA. Eur. Phys. J. C 2010, 67, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; d’Angelo, S.; Di Marco, A.; et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 2013, 73, 2648. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Barbeau, P.S.; Bowden, N.S.; Cabrera-Palmer, B.; Colaresi, J.; Collar, J.I.; Dazeley, S.; de Lurgio, P.; Fast, J.E.; Fields, N.; et al. Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector. Phys. Rev. Lett. 2011, 106, 131301. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Barbeau, P.S.; Colaresi, J.; Collar, J.I.; Diaz Leon, J.; Fast, J.E.; Fields, N.; Hossbach, T.W.; Keillor, M.E.; Kephart, J.D.; et al. Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector. Phys. Rev. Lett. 2011, 107, 141301. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Barbeau, P.S.; Colaresi, J.; Collar, J.I.; Leon, J.D.; Fast, J.E.; Fields, N.E.; Hossbach, T.W.; Knecht, A.; Kos, M.S.; et al. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors. Phys. Rev. D 2013, 88, 012002. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Barbeau, P.S.; Colaresi, J.; Collar, J.I.; Leon, J.D.; Fast, J.E.; Fields, N.E.; Hossbach, T.W.; Knecht, A.; Kos, M.S.; et al. Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data. arXiv 2014, arXiv:1401.3295. [Google Scholar]
- Aalseth, C.E.; Barbeau, P.S.; Colaresi, J.; Leon, J.D.; Fast, J.E.; Hossbach, T.W.; Knecht, A.; Kos, M.S.; Marino, M.G.; Miley, H.S.; et al. Maximum Likelihood Signal Extraction Method Applied to 3.4 years of CoGeNT Data. arXiv 2014, arXiv:1401.6234. [Google Scholar]
- Agnese, R.; Ahmed, Z.; Anderson, A.J.; Arrenberg, S.; Balakishiyeva, D.; Thakur, R.B.; Bauer, D.A.; Billard, J.; Borgland, A.; Brandt, D.; et al. Silicon Detector Dark Matter Results from the Final Exposure of CDMS II. Phys. Rev. Lett. 2013, 111, 251301. [Google Scholar] [CrossRef]
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ala-Mattinen, K.; Kainulainen, K. Precision calculations of dark matter relic abundance. J. Cosmol. Astropart. Phys. 2020, 09, 040. [Google Scholar] [CrossRef]
- Arcadi, G.; Djouadi, A.; Kado, M. The Higgs-portal for dark matter: Effective field theories versus concrete realizations. Eur. Phys. J. C 2021, 81, 653. [Google Scholar] [CrossRef]
- Alanne, T.; Benincasa, N.; Heikinheimo, M.; Kannike, K.; Keus, V.; Koivunen, N.; Tuominen, K. Pseudo-Goldstone dark matter: Gravitational waves and direct-detection blind spots. J. High Energy Phys. 2020, 10, 080. [Google Scholar] [CrossRef]
- Alarcon, J.M.; Geng, L.S.; Martin Camalich, J.; Oller, J.A. The strangeness content of the nucleon from effective field theory and phenomenology. Phys. Lett. B 2014, 730, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, D.; Duch, M.; Grzadkowski, B.; Huang, D.; Iglicki, M.; Santos, R. One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model. J. High Energy Phys. 2019, 1, 138. [Google Scholar] [CrossRef] [Green Version]
- Bulbul, E.; Markevitch, M.; Foster, A.; Smith, R.K.; Loewenstein, M.; Randall, S.W. Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters. Astrophys. J. 2014, 789, 13. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D.; Franse, J. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett. 2014, 113, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, F.S.; Sinha, K. The Poker Face of the Majoron Dark Matter Model: LUX to keV Line. Phys. Lett. B 2014, 735, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Ko, P.; Park, W.I. The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model. arXiv 2014, arXiv:1405.3730. [Google Scholar]
- Farzan, Y.; Akbarieh, A.R. Decaying Vector Dark Matter as an Explanation for the 3.5 keV Line from Galaxy Clusters. J. Cosmol. Astropart. Phys. 2014, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Arcadi, G.; Covi, L.; Dradi, F. 3.55 keV line in Minimal Decaying Dark Matter scenarios. J. Cosmol. Astropart. Phys. 2015, 7, 023. [Google Scholar] [CrossRef] [Green Version]
- Merle, A.; Schneider, A. Production of Sterile Neutrino Dark Matter and the 3.5 keV line. Phys. Lett. B 2015, 749, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Roland, S.B.; Shakya, B.; Wells, J.D. PeV neutrinos and a 3.5 keV x-ray line from a PeV-scale supersymmetric neutrino sector. Phys. Rev. D 2015, 92, 095018. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z. Upgrading sterile neutrino dark matter to FImP using scale invariance. Eur. Phys. J. C 2015, 75, 471. [Google Scholar] [CrossRef] [Green Version]
- Corbin, V.; Cornish, N.J. Detecting the cosmic gravitational wave background with the big bang observer. Class. Quant. Grav. 2006, 23, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 2001, 87, 221103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuominen, K. Cold Particle Dark Matter. Symmetry 2021, 13, 1945. https://doi.org/10.3390/sym13101945
Tuominen K. Cold Particle Dark Matter. Symmetry. 2021; 13(10):1945. https://doi.org/10.3390/sym13101945
Chicago/Turabian StyleTuominen, Kimmo. 2021. "Cold Particle Dark Matter" Symmetry 13, no. 10: 1945. https://doi.org/10.3390/sym13101945
APA StyleTuominen, K. (2021). Cold Particle Dark Matter. Symmetry, 13(10), 1945. https://doi.org/10.3390/sym13101945