Galactic Anomalies and Particle Dark Matter
Abstract
:1. Introduction
1.1. Evidence for Dark Matter
1.2. Candidates for Dark Matter
1.3. Pinning down the Properties of Dark Matter Using Observations
- Is the dark matter cold or warm?
- Is the dark matter self-interacting? (Does it have some pressure?)
- Can we put a lower limit on the mass of the dark matter due it (not-)exhibiting particular fermionic or bosonic behaviour?
- Are the astrophysical observations consistent with dark matter being some kind of particle, or are they telling us something else?
2. Small-Scale Structures and Implications for Particle Physics
2.1. The Missing Satellites “Problem“
2.2. Lyman-α Forest Constraints
2.3. Too Big to Fail
2.4. Other Probes of Small Scale Structures
3. Cores vs. Cusps
3.1. Measuring Cores vs. Cusps in Dwarf Galaxies
3.2. Using Kurtosis to Solve the Problem
3.3. Cores vs. Cusps in Larger Galaxies
3.4. Dark Matter Simulations Containing Baryons
4. Phase-Space Constraints on Fermionic Dark Matter
5. Self-Interacting Dark Matter
6. The Diversity Problem
7. Planes of Satellite Galaxies
8. MOND and the Radial Acceleration Relation
8.1. Successes of MOND
8.2. Problems with MOND
8.3. Particle Attempts at MOND
8.4. Unscientific Thoughts and Observations
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, 641, 6. [Google Scholar]
- Stadler, J.; Bœhm, C. Constraints on γ-CDM interactions matching the Planck data precision. J. Cosmol. Astropart. Phys. 2018, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Rubin, V.C.; Ford, W.; Kent, J. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379–403. [Google Scholar] [CrossRef]
- Peebles, P. Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 1984, 277, 470–477. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Clowe, D.; Bradac, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Dodelson, S. The Real Problem with MOND. Int. J. Mod. Phys. D 2011, 20, 2749–2753. [Google Scholar] [CrossRef] [Green Version]
- Pardo, K.; Spergel, D.N. What is the price of abandoning dark matter? Cosmological constraints on alternative gravity theories. Phys. Rev. Lett. 2020, 125, 211101. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chaung, C.-H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef] [Green Version]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Diaz Rivero, A.; Dvorkin, C. Direct Detection of Dark Matter Substructure in Strong Lens Images with Convolutional Neural Networks. Phys. Rev. 2020, 101, 23515. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Chabanier, S.; Millea, M.; Palanque-Delabrouille, N. Matter power spectrum: From Lyman alpha forest to CMB scales. Mon. Not. R. Astron. Soc. 2019, 489, 2247–2253. [Google Scholar] [CrossRef]
- Petac, M. Hunt for dark subhalos in the galactic stellar field using computer vision. arXiv 2019, arXiv:1910.02492. [Google Scholar]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 43541. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.; Kuhnel, F.; Sandstad, M. Primordial Black Holes as Dark Matter. Phys. Rev. D 2016, 94, 83504. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile Neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Zurek, K.M. Asymmetric Dark Matter: Theories, Signatures, and Constraints. Phys. Rept. 2014, 537, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bernard, E.P.; Beltrame, P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 21303. [Google Scholar] [CrossRef]
- Cui, M.Y.; Yuan, Q.; Tsai, Y.L.S.; Fan, Y.Z. Possible dark matter annihilation signal in the AMS-02 antiproton data. Phys. Rev. Lett. 2017, 118, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.J.; Lisanti, M.; Mishra-Sharma, S. Search for dark matter annihilation in the Milky Way halo. Phys. Rev. 2018, 98, 123004. [Google Scholar] [CrossRef] [Green Version]
- Lisanti, M.; Mishra-Sharma, S.; Rodd, N.L.; Safdi, B.R. Search for Dark Matter Annihilation in Galaxy Groups. Phys. Rev. Lett. 2018, 120, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, A.; Anderson, B.; Bechtol, K.; Drlica-Wagner, A.; Meyer, M.; Sánchez-Conde, M.; Strigari, L.; Wood, M.; Abbott, T.M.C.; Abdalla, F.B.; et al. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT. Astrophys. J. 2017, 834, 110. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; et al. Search for dijet resonances in proton–proton collisions at = 13 TeV and constraints on dark matter and other models. Phys. Lett. 2017, 769, 520–542. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abbott, D.C.; Abdinov, O.; Abhayasinghe, D.C.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Constraints on mediator-based dark matter and scalar dark energy models using s = 13 TeV pp collision data collected by the ATLAS detector. JHEP 2019, 5, 142. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Goodenough, L. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope. Phys. Lett. B 2011, 697, 412–428. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Cholis, I.; Weniger, C. Background Model Systematics for the Fermi GeV Excess. J. Cosmol. Astropart. Phys. 2015, 3, 38. [Google Scholar] [CrossRef]
- Chang, L.J.; Mishra-Sharma, S.; Lisanti, M.; Buschmann, M.; Rodd, N.L.; Safdi, B.R. Characterizing the nature of the unresolved point sources in the Galactic Center: An assessment of systematic uncertainties. Phys. Rev. D 2020, 101, 23014. [Google Scholar] [CrossRef] [Green Version]
- Abazajian, K.N. The Consistency of Fermi-LAT Observations of the Galactic Center with a Millisecond Pulsar Population in the Central Stellar Cluster. J. Cosmol. Astropart. Phys. 2011, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Eckner, C.; Hou, X.; Serpico, P.D.; Winter, M.; Zaharijas, G.; Martin, P.; Mauro, M.; Mirabal, N.; Petrovic, J.; Prodanovic, T.; et al. Millisecond pulsar origin of the Galactic center excess and extended gamma-ray emission from Andromeda—A closer look. Astrophys. J. 2018, 862, 79. [Google Scholar] [CrossRef]
- Leane, R.K.; Slatyer, T.R. Revival of the Dark Matter Hypothesis for the Galactic Center Gamma-Ray Excess. Phys. Rev. Lett. 2019, 123, 241101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabal, N. Dark matter vs. Pulsars: Catching the impostor. Mon. Not. R. Astron. Soc. 2013, 436, 2461. [Google Scholar] [CrossRef] [Green Version]
- Petrović, J.; Serpico, P.D.; Zaharijas, G. Millisecond pulsars and the Galactic Center gamma-ray excess: The importance of luminosity function and secondary emission. J. Cosmol. Astropart. Phys. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Ioka, K. Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays. Astrophys. J. 2015, 802, 124. [Google Scholar] [CrossRef] [Green Version]
- Ploeg, H.; Gordon, C.; Crocker, R.; Macias, O. Consistency between the Luminosity Function of Resolved Millisecond Pulsars and the Galactic Center Excess. J. Cosmol. Astropart. Phys. 2017, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R.; Kaloper, N. Many fold universe. J. High Energy Phys. 2000, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Fairbairn, M.; Kainulainen, K.; Markkanen, T.; Nurmi, S. Despicable Dark Relics: Generated by gravity with unconstrained masses. J. Cosmol. Astropart. Phys. 2019, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Brehmer, J.; Mishra-Sharma, S.; Hermans, J.; Louppe, G.; Cranmer, K. Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning. Astrophys. J. 2019, 886, 49. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark Matter Substructure within Galactic Halos. Astrophys. J. 1999, 524, L19–L22. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of LCDM. Mon. Not. R. Astron. Soc. 2012, 422, 1203–1218. [Google Scholar] [CrossRef]
- Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 1994, 370, 629–631. [Google Scholar] [CrossRef]
- De Naray, R.K.; McGaugh, S.S.; de Blok, W.J.G. Mass Models for Low Surface Brightness Galaxies with High-Resolution Optical Velocity Fields. Astrophys. J. 2008, 676, 920–943. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; de Blok, W.J.G.; Walter, F.; Brinks, E.; Kennicutt, R.C.J. High-Resolution Dark Matter Density Profiles of THINGS Dwarf Galaxies: Correcting for Noncircular Motions. Astrophys. J. 2008, 136, 2761–2781. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.G.; Peñarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 20. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Hunter, D.A.; Brinks, E.; Elmegreen, B.G.; Schruba, A.; Walter, F.; Rupen, M.P.; Young, L.M.; Simpson, C.E.; Johnson, M.C.; et al. High-resolution Mass Models of Dwarf Galaxies from Little Things. Astrophys. J. 2015, 149, 180. [Google Scholar] [CrossRef]
- Diemand, J.; Moore, B.; Stadel, J. Earth-mass dark-matter haloes as the first structures in the early Universe. Nature 2005, 433, 389–391. [Google Scholar] [CrossRef]
- Green, A.M.; Hofmann, S.; Schwarz, D.J. The First wimpy halos. J. Cosmol. Astropart. Phys. 2005, 8, 3. [Google Scholar] [CrossRef]
- Dodelson, S.; Widrow, L.M. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, P.; Ostriker, J.P.; Turok, N. Halo Formation in Warm Dark Matter Models. Astrophys. J. 2001, 556, 93–107. [Google Scholar] [CrossRef]
- Hooper, D.; Kaplinghat, M.; Strigari, L.E.; Zurek, K.M. MeV dark matter and small scale structure. Phys. Rev. D 2007, 76, 103515. [Google Scholar] [CrossRef] [Green Version]
- Tulin, S.; Yu, H.B. Dark Matter Self-interactions and Small Scale Structure. Phys. Rep. 2018, 730, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Behrens, C.; Niemeyer, J.C. Substructure of fuzzy dark matter haloes. Mon. Not. Roy. Astron. Soc. 2017, 465, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Safarzadeh, M.; Spergel, D.N. Ultra-light Dark Matter is Incompatible with the Milky Way’s Dwarf Satellites. Astrophys. J. 2020, 893, 21. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.; Peter, A.H.; Bullock, J.S.; Kaplinghat, M.; Garrison-Kimmel, S.; Onorbe, J.; Moustakas, L.A. Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure. Mon. Not. R. Astron. Soc. 2013, 430, 81–104. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.S.; Rosenfeld, R.; Sobreira, F. Forecasts for Warm Dark Matter from Photometric Galaxy Surveys. Mon. Not. R. Astron. Soc. 2018, 481, 1290–1299. [Google Scholar] [CrossRef]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Theuns, T.; Bower, R.G.; Crain, R.A.; Furlong, M.; Jenkins, A.; Schaller, M.; et al. The chosen few: The low-mass haloes that host faint galaxies. Mon. Not. R. Astron. Soc. 2016, 456, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Drlica-Wagner, A.; Bechtol, K.; Rykoff, E.S.; Luque, E.; Queiroz, A.; Mao, Y.Y.; Wechsler, R.H.; Simon, J.D.; Santiago, B.; Yanny, B.; et al. Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey. Astrophys. J. 2015, 813, 109. [Google Scholar] [CrossRef] [Green Version]
- Read, J.; Erkal, D. Abundance matching with the mean star formation rate: There is no missing satellites problem in the Milky Way above M200∼109M⊙. Mon. Not. R. Astron. Soc. 2019, 487, 5799–5812. [Google Scholar] [CrossRef] [Green Version]
- Anderhalden, D.; Schneider, A.; Maccio, A.V.; Diemand, J.; Bertone, G. Hints on the Nature of Dark Matter from the Properties of Milky Way Satellites. J. Cosmol. Astropart. Phys. 2013, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Lovell, M.R.; Bose, S.; Boyarsky, A.; Cole, S.; Frenk, C.S.; Gonzalez-Perez, V.; Kennedy, R.; Ruchayskiy, O.; Smith, A. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter. Mon. Not. R. Astron. Soc. 2016, 461, 60–72. [Google Scholar] [CrossRef]
- Read, J.; Iorio, G.; Agertz, O.; Fraternali, F. The stellar mass–halo mass relation of isolated field dwarfs: A critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 2017, 467, 2019–2038. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Peter, A.H.G.; Hargis, J.R. Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter Predictions. Phys. Rev. Lett. 2018, 121, 211302. [Google Scholar] [CrossRef] [Green Version]
- Jethwa, P.; Erkal, D.; Belokurov, V. The upper bound on the lowest mass halo. Mon. Not. R. Astron. Soc. 2018, 473, 2060–2083. [Google Scholar] [CrossRef] [Green Version]
- Nadler, E.; Drlica-Wagner, A.; Bechtol, K.; Mau, S.; Wechsler, R.H.; Gluscevic, V.; Boddy, K.; Pace, A.B.; Li, T.S.; McNanna, M.; et al. Milky Way Satellite Census. III. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. Phys. Rev. Lett. 2021, 126, 91101. [Google Scholar] [CrossRef]
- Lovell, M.R.; Cautun, M.; Frenk, C.S.; Hellwing, W.A.; Newton, O. The spatial distribution of Milky Way satellites, gaps in streams and the nature of dark matter. Phys. Rev. Lett. 2021, 126, 91101. [Google Scholar] [CrossRef]
- Villasenor, B.; Robertson, B.; Madau, P.; Schneider, E. Inferring the Thermal History of the Intergalactic Medium from the Properties of the Hydrogen and Helium Lyman-alpha Forest. arXiv 2021, arXiv:2111.00019. [Google Scholar]
- Efstathiou, G.; Schaye, J.; Theuns, T. Lyman alpha absorption systems and the intergalactic medium. Phil. Trans. R. Soc. Lond. A 2000, 358, 2049. [Google Scholar] [CrossRef] [Green Version]
- Viel, M.; Becker, G.D.; Bolton, J.S.; Haehnelt, M.G. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D 2013, 88, 43502. [Google Scholar] [CrossRef] [Green Version]
- Garzilli, A.; Ruchayskiy, O.; Magalich, A.; Boyarsky, A. How warm is too warm? Towards robust Lyman-α forest bounds on warm dark matter. arXiv 2019, arXiv:1912.09397. [Google Scholar]
- Palanque-Delabrouille, N.; Yèche, C.; Schöneberg, N.; Lesgourgues, J.; Walther, M.; Chabanier, S.; Armengaud, E. Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. J. Cosmol. Astropart. Phys. 2020, 4, 38. [Google Scholar] [CrossRef]
- Rogers, K.K.; Peiris, H.V. Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. Phys. Rev. Lett. 2021, 126, 71302. [Google Scholar] [CrossRef] [PubMed]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. Lett. 2011, 415, L40–L44. [Google Scholar] [CrossRef] [Green Version]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Kirby, E.N. Too big to fail in the Local Group. Mon. Not. R. Astron. Soc. Lett. 2014, 444, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The structure of cold dark matter halos. In Proceedings of the Symposium-International Astronomical Union, Antalya, Turkey, 27–31 May 1996; Volume 462, p. 563. [Google Scholar] [CrossRef] [Green Version]
- Mashchenko, S.; Wadsley, J.; Couchman, H.M.P. Stellar Feedback in Dwarf Galaxy Formation. Science 2008, 319, 174. [Google Scholar] [CrossRef] [Green Version]
- Peñarrubia, J.; Pontzen, A.; Walker, M.G.; Koposov, S.E. The Coupling between the Core/Cusp and Missing Satellite Problems. Astrophys. J. Lett. 2012, 759, 42. [Google Scholar] [CrossRef] [Green Version]
- Pontzen, A.; Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 2012, 421, 3464–3471. [Google Scholar] [CrossRef] [Green Version]
- Governato, F.; Zolotov, A.; Pontzen, A.; Christensen, C.; Oh, S.H.; Brooks, A.M.; Quinn, T.; Shen, S.; Wadsley, J. Cuspy no more: How outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 2012, 422, 1231–1240. [Google Scholar] [CrossRef]
- Brooks, A.M.; Zolotov, A. Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites. Astrophys. J. 2014, 786, 87. [Google Scholar] [CrossRef] [Green Version]
- Oñorbe, J.; Boylan-Kolchin, M.; Bullock, J.S.; Hopkins, P.F.; Kereš, D.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N. Forged in FIRE: Cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 2092–2106. [Google Scholar] [CrossRef]
- Bovy, J.; Erkal, D.; Sanders, J.L. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum. Mon. Not. R. Astron. Soc. 2017, 466, 628–668. [Google Scholar] [CrossRef] [Green Version]
- Banik, N.; Bovy, J.; Bertone, G.; Erkal, D.; de Boer, T. Evidence of a population of dark subhalos from Gaia and Pan-STARRS observations of the GD-1 stream. Mon. Not. R. Astron. Soc. 2021, 502, 2364–2380. [Google Scholar] [CrossRef]
- Nadler, E.O.; Birrer, S.; Gilman, D.; Wechsler, R.H.; Du, X.; Benson, A.; Nierenberg, A.M.; Treu, T. Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies. Astrophys. J. 2021, 917, 7. [Google Scholar] [CrossRef]
- Navarro, J.F.; Ludlow, A.; Springel, V.; Wang, J.; Vogelsberger, M.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Helmi, A. The Diversity and Similarity of Cold Dark Matter Halos. Mon. Not. R. Astron. Soc. 2010, 402, 21. [Google Scholar] [CrossRef] [Green Version]
- Iocco, F.; Pato, M.; Bertone, G. Evidence for dark matter in the inner Milky Way. Nat. Phys. 2015, 11, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Jeans, J.H. The Motions of Stars in a Kapteyn Universe. Mon. Not. R. Astron. Soc. 1922, 82, 122–132. [Google Scholar] [CrossRef]
- Binney, J.; Mamon, G.A. M/L and velocity anisotropy from observations of spherical galaxies, of must M 87 have a massive black hole? Mon. Not. R. Astron. Soc. 1982, 200, 361–375. [Google Scholar] [CrossRef]
- Wolf, J.; Martinez, G.D.; Bullock, J.S.; Kaplinghat, M.; Geha, M.; Muñoz, R.R.; Simon, J.D.; Avedo, F.F. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 2010, 406, 1220–1237. [Google Scholar] [CrossRef] [Green Version]
- Genina, A.; Benítez-Llambay, A.; Frenk, C.S.; Cole, S.; Fattahi, A.; Navarro, J.F.; Oman, K.A.; Sawala, T.; Theuns, T. The core-cusp problem: A matter of perspective. Mon. Not. R. Astron. Soc. 2018, 474, 1398–1411. [Google Scholar] [CrossRef] [Green Version]
- Richardson, T.; Fairbairn, M. Analytical Solutions to the Mass-Anisotropy Degeneracy with Higher Order Jeans Analysis: A General Method. Mon. Not. R. Astron. Soc. 2013, 432, 3361–3380. [Google Scholar] [CrossRef]
- Richardson, T.; Fairbairn, M. On the dark matter profile in Sculptor: Breaking the β degeneracy with Virial shape parameters. Mon. Not. R. Astron. Soc. 2014, 441, 1584–1600. [Google Scholar] [CrossRef] [Green Version]
- Read, J.; Walker, M.; Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Genina, A.; Read, J.I.; Frenk, C.S.; Cole, S.; Benitez-Llambay, A.; Ludlow, A.D.; Navarro, J.F.; Oman, K.A.; Robertson, A. To beta or not to beta: Can higher-order Jeans analysis break the mass-anisotropy degeneracy in simulated dwarfs? Mon. Not. R. Astron. Soc. 2020, 498, 144–163. [Google Scholar] [CrossRef]
- Marsh, D.J.E.; Pop, A.R. Axion dark matter, solitons and the cusp–core problem. Mon. Not. R. Astron. Soc. 2015, 451, 2479–2492. [Google Scholar] [CrossRef]
- Rosswog, S. Astrophysical Smooth Particle Hydrodynamics. New Astron. Rev. 2009, 53, 78–104. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Fairbairn, M.; Sommer-Larsen, J. Baryonic Pinching of Galactic Dark Matter Haloes. Phys. Rev. D 2006, 74, 123522. [Google Scholar] [CrossRef] [Green Version]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Vecchia, C.D.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937–1961. [Google Scholar] [CrossRef]
- Asaka, T.; Shaposhnikov, M. The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.D.; Fuller, G.M. A New dark matter candidate: Nonthermal sterile neutrinos. Phys. Rev. Lett. 1999, 82, 2832–2835. [Google Scholar] [CrossRef] [Green Version]
- Abazajian, K.; Fuller, G.M.; Tucker, W.H. Direct detection of warm dark matter in the X-ray. Astrophys. J. 2001, 562, 593–604. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part Sci. 2009, 59, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Tremaine, S.; Gunn, J. Dynamical Role of Light Neutral Leptons in Cosmology. Phys. Rev. Lett. 1979, 42, 407–410. [Google Scholar] [CrossRef]
- Dalcanton, J.J.; Hogan, C.J. Halo cores and phase space densities: Observational constraints on dark matter physics and structure formation. Astrophys. J. 2001, 561, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D. A Lower bound on the mass of Dark Matter particles. J. Cosmol. Astropart. Phys. 2009, 3, 005. [Google Scholar] [CrossRef] [Green Version]
- Alvey, J.; Sabti, N.; Tiki, V.; Blas, D.; Bondarenko, K.; Boyarsky, A.; Escudero, M.; Fairbairn, M.; Orkney, M.; Read, J.I. New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2021, 501, 1188–1201. [Google Scholar] [CrossRef]
- Spergel, D.N.; Steinhardt, P.J. Observational Evidence for Self-Interacting Cold Dark Matter. Phys. Rev. Lett. 2000, 84, 3760–3763. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.; Shapiro, P.R. Formation and evolution of self-interacting dark matter haloes. Mon. Not. R. Astron. Soc. 2005, 363, 1092–1110. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, L.; Buckley, M.R.; Carroll, S.M.; Kamionkowski, M. Dark matter and dark radiation. Phys. Rev. D 2009, 79, 23519. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.L.; Kaplinghat, M.; Tu, H.; Yu, H.B. Hidden charged dark matter. J. Cosmol. Astropart. Phys. 2009, 2009, 4. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A theory of dark matter. Phys. Rev. D 2009, 79, 15014. [Google Scholar] [CrossRef]
- Loeb, A.; Weiner, N. Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Phys. Rev. Lett. 2011, 106, 171302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulin, S.; Yu, H.B.; Zurek, K.M. Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure. Phys. Rev. D 2013, 87, 115007. [Google Scholar] [CrossRef] [Green Version]
- Koda, J.; Shapiro, P.R. Gravothermal collapse of isolated self-interacting dark matter haloes: N-body simulation versus the fluid model. Mon. Not. R. Astron. Soc. 2011, 415, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Zavala, J.; Vogelsberger, M.; Walker, M.G. Constraining self-interacting dark matter with the Milky way’s dwarf spheroidals. Mon. Not. R. Astron. Soc. Lett. 2013, 431, L20–L24. [Google Scholar] [CrossRef] [Green Version]
- Valli, M.; Yu, H.B. Dark matter self-interactions from the internal dynamics of dwarf spheroidals. Nat. Astron. 2018, 2, 907–912. [Google Scholar] [CrossRef]
- Correa, C.A. Constraining Velocity-dependent Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidal galaxies. arXiv 2020, arXiv:2007.02958. [Google Scholar] [CrossRef]
- Hayashi, K.; Ibe, M.; Kobayashi, S.; Nakayama, Y.; Shirai, S. Probing Dark Matter Self-interaction with Ultra-faint Dwarf Galaxies. arXiv 2020, arXiv:2008.02529. [Google Scholar]
- Yoshida, N.; Springel, V.; White, S.D.M.; Tormen, G. Weakly Self-interacting Dark Matter and the Structure of Dark Halos. Astrophys. J. 2000, 544, L87–L90. [Google Scholar] [CrossRef]
- Randall, S.W.; Markevitch, M.; Clowe, D.; Gonzalez, A.H.; Bradač, M. Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56. Astrophys. J. 2008, 679, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.H.G.; Rocha, M.; Bullock, J.S.; Kaplinghat, M. Cosmological simulations with self-interacting dark matter—II. Halo shapes versus observations. Mon. Not. R. Astron. Soc. 2013, 430, 105–120. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Cyr-Racine, F.Y.; Pfrommer, C.; Bringmann, T.; Sigurdson, K. ETHOS—An effective theory of structure formation: Dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 2016, 460, 1399–1416. [Google Scholar] [CrossRef] [Green Version]
- Sokolenko, A.; Bondarenko, K.; Brinckmann, T.; Zavala, J.; Vogelsberger, M.; Bringmann, T.; Boyarsky, A. Towards an improved model of self-interacting dark matter haloes. J. Cosmol. Astropart. Phys. 2018, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Sameie, O.; Benson, A.J.; Sales, L.V.; Yu, H.b.; Moustakas, L.A.; Creasey, P. The Effect of Dark Matter-Dark Radiation Interactions on Halo Abundance: A Press-Schechter Approach. Astrophys. J. 2019, 874, 101. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, K.; Sokolenko, A.; Boyarsky, A.; Robertson, A.; Harvey, D.; Revaz, Y. From dwarf galaxies to galaxy clusters: Self-Interacting Dark Matter over 7 orders of magnitude in halo mass. arXiv 2020, arXiv:2006.06623. [Google Scholar] [CrossRef]
- Fischer, M.S.; Brüggen, M.; Schmidt-Hoberg, K.; Dolag, K.; Kahlhoefer, F.; Ragagnin, A.; Robertson, A. N-body simulations of dark matter with frequent self-interactions. Mon. Not. R. Astron. Soc. 2021, 505, 851–868. [Google Scholar] [CrossRef]
- Oman, K.A.; Navarro, J.F.; Fattahi, A.; Frenk, C.S.; Sawala, T.; White, S.D.M.; Bower, R.; Crain, R.A.; Furlong, M.; Schaller, M.; et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 2015, 452, 3650–3665. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Valli, M.; Yu, H.B. Too big to fail in light of Gaia. Mon. Not. R. Astron. Soc. 2019, 490, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Kaplinghat, M.; Keeley, R.E.; Linden, T.; Yu, H.B. Tying Dark Matter to Baryons with Self-Interactions. Phys. Rev. Lett. 2014, 113, 21302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbert, O.D.; Bullock, J.S.; Kaplinghat, M.; Garrison-Kimmel, S.; Graus, A.S.; Rocha, M. A Testable Conspiracy: Simulating Baryonic Effects on Self-interacting Dark Matter Halos. Astrophys. J. 2018, 853, 109. [Google Scholar] [CrossRef] [Green Version]
- Sameie, O.; Creasey, P.; Yu, H.B.; Sales, L.V.; Vogelsberger, M.; Zavala, J. The impact of baryonic discs on the shapes and profiles of self-interacting dark matter haloes. Mon. Not. R. Astron. Soc. 2018, 479, 359–367. [Google Scholar] [CrossRef]
- Creasey, P.; Sameie, O.; Sales, L.V.; Yu, H.B.; Vogelsberger, M.; Zavala, J. Spreading out and staying sharp—Creating diverse rotation curves via baryonic and self-interaction effects. Mon. Not. R. Astron. Soc. 2017, 468, 2283–2295. [Google Scholar] [CrossRef]
- Kamada, A.; Kaplinghat, M.; Pace, A.B.; Yu, H.B. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves. Phys. Rev. Lett. 2017, 119, 111102. [Google Scholar] [CrossRef]
- Ren, T.; Kwa, A.; Kaplinghat, M.; Yu, H.B. Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter. Phys. Rev. X 2019, 9, 31020. [Google Scholar] [CrossRef] [Green Version]
- Despali, G.; Sparre, M.; Vegetti, S.; Vogelsberger, M.; Zavala, J.; Marinacci, F. The interplay of self-interacting dark matter and baryons in shaping the halo evolution. Mon. Not. R. Astron. Soc. 2019, 484, 4563–4573. [Google Scholar] [CrossRef] [Green Version]
- Sameie, O.; Yu, H.B.; Sales, L.V.; Vogelsberger, M.; Zavala, J. Self-Interacting Dark Matter Subhalos in the Milky Way’s Tides. Phys. Rev. Lett. 2020, 124, 141102. [Google Scholar] [CrossRef] [Green Version]
- Sameie, O.; Chakrabarti, S.; Yu, H.B.; Boylan-Kolchin, M.; Vogelsberger, M.; Zavala, J.; Hernquist, L. Simulating the “hidden giant” in cold and self-interacting dark matter models. arXiv 2020, arXiv:2006.06681. [Google Scholar]
- Lynden-Bell, D. Dwarf galaxies and globular clusters in high velocity hydrogen streams. Mon. Not. R. Astron. Soc. 1976, 174, 695–710. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P.; Theis, C.; Boily, C.M. The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 2005, 431, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Pflamm-Altenburg, J.; Kroupa, P. The VPOS: A vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. Mon. Not. R. Astron. Soc. 2012, 423, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Fritz, T.K.; Battaglia, G.; Pawlowski, M.S.; Kallivayalil, N.; van der Marel, R.; Sohn, S.T.; Brook, C.; Besla, G. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 2018, 619, A103. [Google Scholar] [CrossRef] [Green Version]
- Hodkinson, B.; Scholtz, J. Proper Motions of the Satellites of M31. Mon. Not. R. Astron. Soc. 2019, 488, 3231–3237. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Kroupa, P. The Milky Way’s disc of classical satellite galaxies in light of Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 491, 3042–3059. [Google Scholar] [CrossRef] [Green Version]
- Ibata, R.A.; Lewis, G.F.; Conn, A.R.; Irwin, M.J.; McConnachie, A.W.; Chapman, S.C.; Collins, M.L.; Fardal, M.; Ferguson, A.M.N.; Ibata, N.G.; et al. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature 2013, 493, 62–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, A.R.; Lewis, G.F.; Ibata, R.A.; Parker, Q.A.; Zucker, D.B.; McConnachie, A.W.; Martin, N.F.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M.J.; et al. The Three-dimensional Structure of the M31 Satellite System; Strong Evidence for an Inhomogeneous Distribution of Satellites. Astrophys. J. 2013, 766, 120. [Google Scholar] [CrossRef]
- Müller, O.; Pawlowski, M.S.; Jerjen, H.; Lelli, F. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 2018, 359, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S. The Planes of Satellite Galaxies Problem, Suggested Solutions, and Open Questions. Mod. Phys. Lett. A 2018, 33, 1830004. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics: Implications for galaxies. Astrophys. J. 1983, 270, 371–383. [Google Scholar] [CrossRef]
- Bekenstein, J.; Milgrom, M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286, 7–14. [Google Scholar] [CrossRef]
- Tully, R.B.; Fisher, J.R. Reprint of 1977A&A.54.661T. A new method of determining distance to galaxies. Astron. Astrophys. 1977, 500, 105–117. [Google Scholar]
- Tonini, C.; Maraston, C.; Ziegler, B.; Böhm, A.; Thomas, D.; Devriendt, J.; Silk, J. The hierarchical build-up of the Tully-Fisher relation. Mon. Not. R. Astron. Soc. 2011, 415, 811–828. [Google Scholar] [CrossRef] [Green Version]
- Bílek, M.; Thies, I.; Kroupa, P.; Famaey, B. MOND simulation suggests an origin for some peculiarities in the Local Group. Astron. Astrophys. 2018, 614, 59. [Google Scholar] [CrossRef] [Green Version]
- Swaters, R.A.; Sanders, R.H.; McGaugh, S.S. Testing Modified Newtonian Dynamics with Rotation Curves of Dwarf and Low Surface Brightness Galaxies. Astrophys. J. 2010, 718, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lelli, F.; McGaugh, S.; Schombert, J. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 2018, 615, A3. [Google Scholar] [CrossRef] [Green Version]
- Markevitch, M.; Gonzalez, A.H.; Clowe, D.; Vikhlinin, A.; David, L.; Forman, W.; Jones, C.; Murray, S.; Tucker, W. Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys. J. 2004, 606, 819–824. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Modified gravity vs. dark matter: Relativistic theory for MOND. PoS 2005, 2004, 12. [Google Scholar] [CrossRef] [Green Version]
- Skordis, C.; Mota, D.F.; Ferreira, P.G.; Boehm, C. Large Scale Structure in Bekenstein’s theory of relativistic Modified Newtonian Dynamics. Phys. Rev. Lett. 2006, 96, 11301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezhiani, L.; Khoury, J. Theory of dark matter superfluidity. Phys. Rev. D 2015, 92, 103510. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, L.; Khoury, J. Dark Matter Superfluidity and Galactic Dynamics. Phys. Lett. B 2016, 753, 639–643. [Google Scholar] [CrossRef]
- Skordis, C.; Zlosnik, T. A new relativistic theory for Modified Newtonian Dynamics. Phys. Rev. Lett. 2021, 127, 161302. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.; Olive, K.A. Supersymmetric Dark Matter Candidates. arXiv 2010, arXiv:1001.3651. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairbairn, M. Galactic Anomalies and Particle Dark Matter. Symmetry 2022, 14, 812. https://doi.org/10.3390/sym14040812
Fairbairn M. Galactic Anomalies and Particle Dark Matter. Symmetry. 2022; 14(4):812. https://doi.org/10.3390/sym14040812
Chicago/Turabian StyleFairbairn, Malcolm. 2022. "Galactic Anomalies and Particle Dark Matter" Symmetry 14, no. 4: 812. https://doi.org/10.3390/sym14040812
APA StyleFairbairn, M. (2022). Galactic Anomalies and Particle Dark Matter. Symmetry, 14(4), 812. https://doi.org/10.3390/sym14040812