Next Article in Journal
A New Method for 3-Satisfiability Problem Solving Space Structure on Structural Entropy
Previous Article in Journal
Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory

by
Dipankar Das
1,
Lakshmi Narayan Mishra
2,*,
Vishnu Narayan Mishra
3,*,
Hamurabi Gamboa Rosales
4,*,
Arvind Dhaka
5,*,
Francisco Eneldo López Monteagudo
6,
Edgar González Fernández
4 and
Tania A. Ramirez-delReal
7
1
Department of Mathematical Sciences, Bodoland University, Kokrajhar 783370, India
2
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632014, India
3
Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, India
4
Center for Research and Innovation in Information and Communication (INFOTEC), Ciudad de México 14050, Mexico
5
Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India
6
Academic Unit of Electrical Engineering, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
7
CONACyT—CentroGeo Centro de Investigación en Ciencias de Información Geoespacial, Aguascalientes 20313, Mexico
*
Authors to whom correspondence should be addressed.
Symmetry 2021, 13(11), 2003; https://doi.org/10.3390/sym13112003
Submission received: 5 September 2021 / Revised: 2 October 2021 / Accepted: 9 October 2021 / Published: 22 October 2021

Abstract

:
This article introduces a new type of C * -algebra valued modular G-metric spaces that is more general than both C * -algebra valued modular metric spaces and modular G-metric spaces. Some properties are also discussed with examples. A few common fixed point results in C * -algebra valued modular G-metric spaces are discussed using the “ C * -class function”, along with some suitable examples to validate the results. Ulam–Hyers stability is used to check the stability of some fixed point results. As applications, the existence and uniqueness of solutions for a particular problem in dynamical programming and a system of nonlinear integral equations are provided.

1. Introduction

In recent years, C * -algebra has attracted a lot of interest due to its prospective applications in modern mathematics, entropy analysis, fixed point theory, noncommutative geometry, string theory, quantum mechanics, and other fields. Let A be a Banach algebra and ‘ * ’ be involution self-mapping on A . Then A is said to be a C * -algebra if it satisfies for any z 1 , z 2 A and α , μ C : ([1,2]) z 1 * * = z 1 , ( z 1 z 2 ) * = z 2 * z 1 * , ( α z 1 + μ z 2 ) * = α ¯ z 1 * + μ ¯ z 2 * and z 1 * z 1 = z 1 2 , (which easily shows that z 1 * = z 1 ). Let A be an unital C * -algebra with the identity 1 A and zero element θ . Every element of the set A + = { x A : x θ } is called positive, any element of A + is x A with x = x * and spectrum σ ( x ) R + , where σ ( x ) = { α R : | α 1 A x | = 0 } .
A partial ordering “ ” on A behaves as x y x y A + . For every element θ x A has a unique positive square root, i.e., | x | = ( x * x ) 1 2 .
Ma et al. [3] initiated C * - a v M S by replacing real numbers with positive elements of unital C * -algebra, which generalizes metric spaces, and studied some fixed point results. Ma et al. [4] also generalized this concept and pioneered C * - a v b - M S . According to Alsulami et al. [5] and Kadelburg et al. [6], the fixed point results in C * - a v M S and C * - a v b - M S can be found as the implications of their classic metric spaces and b-metric spaces, respectively. Despite this, Mustafa et al. [7] described the significance and obstacles of studying fixed point theory in C * -algebra, and how research on such spaces has become more popular among researchers. Recently, Kumar et al. [8] explained some fixed point results via “ C * -class function” in C * - a v M S , which are more general than metric spaces. Due to the importance of the study of fixed point results in the setting of C * -algebra, researchers have initiated more new generalized spaces than metric spaces, such as C * - a v G M S [9], C * - a v G b M S [10], C * - a v S M S [11], C * -algebra valued partial metric spaces [12], etc., which enriches this field (see also [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]).
Chistyakov [29,30] initiated modular metric spaces. Since then researchers developed fixed point theory in these spaces. For instance, Zhu et al. [31] studied some fixed point results on asymptotic pointwise contractions in modular metric spaces that generalize metric spaces; Okeke et al. [32] introduced a few fixed point results for rational contractive mappings in modular metric spaces with applications in integrodifferential equations; Shateri [33] initiated C * -algebra valued modular spaces that generalize modular spaces. Ege et al. [34] initiated modular b-metric spaces and applied these concepts in fixed point theory. Based on these papers, Moeini et al. [2,35,36] initiated C * -algebra valued modular metric spaces and Das and Mishra [37] introduced C * -algebra valued modular b-metric spaces.
Hyers [38] answered Ulam’s [39] question about the stability of functional equations for Banach spaces, and the stability used for the answer is known as Ulam–Hyers stability. Studies addressing Ulam–Hyers stability results and different stability results in fixed point theory can be seen in [40,41,42,43,44,45,46,47,48,49,50].
Mustafa and Sims [51] initiated G-metric spaces as a metric space generalization and studied some fixed point results. Researchers developed the study densely for G-metric spaces in fixed point theory, some of which can be seen in [52,53,54,55,56,57,58].
Jleli et al. [59] and Samet et al. [60] showed that fixed point results in G-metric spaces can be generated from existence results in the context of quasi metric spaces.
Asadi et al. [61,62] proved some results in G-metric spaces which cannot be obtained from the existence result in the environment of metric space. Agarwal et al. [63] showed that if the contractivity condition of the fixed point result on a G-metric space can be simplified to two variables then an analogous fixed point result in the context of classic metric spaces can be established easily. They also constructed some new fixed point results that cannot be reduced to quasi metric spaces, with new contractive conditions.
Sedghi et al. [64] introduced S-metric spaces and claimed that space is a generalization of G-metric spaces, but Dung et al. [65] explained that this was incorrect. As a result, studying in such environments is both exciting and demanding.
Due to the demand for research in modular metric spaces, Azadifar et al. [66] initiated modular G-metric spaces, which generalize modular metric spaces as well as metric spaces. Azadifar et al. [67] also studied common fixed point results in modular G-metric spaces. Okeke et al. [68] studied some fixed point results in modular G-metric spaces and Okeke et al. [69] studied in preordered modular G-metric spaces, which were applied to solve nonlinear integral equations.
From the above study, it can be observed that, along with different generalized metric spaces, G-metric spaces and modular G-metric spaces have numerous applications in fixed point theory. Furthermore, studying the fixed point theorem in the context of C * -algebra has a wide range of applications. Researchers present many applications from the obtained results by expressing multiple situations that exemplify the application domains in distinct generalized C * - a v M S as well as generalized modular metric spaces. The foregoing research leads us to investigate modular G-metric spaces in C * -algebra in order to generalize the existing spaces. The study of such spaces resulted in the generalization of modular G-metric spaces as well as C * - a v G M S . Hence, all the results in C * - a v G M S are automatically generalized compared to the existing spaces mentioned in the above literature.
In this paper, we introduce C * -algebra valued modular G-metric spaces via “ C * -class function” to generalize the fixed point results and to offer possible improvements on the structures of some types of metric spaces in algebraic topology. Some fixed point results are discussed with suitable examples, and the stability of these results is checked by using Ulam–Hyers stability. Applications for existence and uniqueness results for a system of nonlinear integral equations and functional equations in dynamic programming are also discussed.

2. Preliminaries

Following the structure of C * - a v G M S [9] and m G M S [66], a new space is introduced called C * -algebra valued modular G-metric space (abbreviated C * - a v m G M S ).
Definition 1.
Let Z be a nonempty set, and S 3 be the permutation group on { 1 , 2 , 3 } . A mapping Ω : ( 0 , ) × Z × Z × Z A + is called a C * - a v m G M on Z, if for any z 1 , b 2 , c 3 , d Z and α > 0 it satisfies:
(i) 
Ω α ( z 1 , b 2 , c 3 ) = θ if z 1 = b 2 = c 3 ,
(ii) 
Ω α ( z 1 , z 1 , b 2 ) θ , for all z 1 , b 2 Z with z 1 b 2 ,
(iii) 
Ω α ( z σ 1 , b σ 2 , c σ 3 ) = Ω α ( z 1 , b 2 , c 3 ) , σ S 3 ,
(iv) 
Ω α ( z 1 , z 1 , b 2 ) Ω α ( z 1 , b 2 , c 3 ) for all z 1 , b 2 , c 3 Z with b 2 c 3 ,
(v) 
Ω α + μ ( z 1 , b 2 , c 3 ) Ω α ( z 1 , d , d ) + Ω μ ( d , b 2 , c 3 ) .
Then ( Z , A , Ω ) is said to be C * - a v m G M S .
Here we discuss some properties and definitions of C * - a v m G M S , as follows:
(a)
The essential property on a set Z of a C * - a v m G M , Ω is that for any z 1 , b 2 , c 3 Z the function 0 < α Ω α ( z 1 , b 2 , c 3 ) A is nonincreasing on ( 0 , ) . Moreover, if 0 < μ < α , then
Ω α ( z 1 , b 2 , c 3 ) Ω α μ ( z 1 , z 1 , z 1 ) + Ω μ ( z 1 , b 2 , c 3 ) ] = Ω μ ( z 1 , b 2 , c 3 ) .
(b)
It can be easily checked as that, if a 0 Z the set
Z Ω = { a Z : lim α Ω α ( a , a 0 , z ) = θ } for some z Z ,
is a C * - a v m G M S with the generalized metric G Ω 0 : Z Ω × Z Ω × Z Ω A is given by
G Ω 0 = inf { α > 0 : Ω α ( z 1 , b 2 , c 3 ) α } for all z 1 , b 2 , c 3 Z Ω ,
called a C * - a v m G M S .
(c)
If ( Z , A , ω ) is a C * - a v m M S then ( Z , A , ω ) can define C * - a v m G M on Z by
( A s ) Ω α s ( z 1 , b 2 , c 3 ) = 1 3 ( ω α ( z 1 , b 2 ) + ω α ( b 2 , c 3 ) + ω α ( c 1 , z 3 ) ) , ( B m ) Ω α m ( z 1 , b 2 , c 3 ) = m a x ( ω α ( z 1 , b 2 ) , ω α ( b 2 , c 3 ) , ω α ( c 1 , z 3 ) ) , for all α > 0 .
(d)
Any C * - a v m G M S , ( Z , A , Ω ) induces a C * a v m M , ω α by
ω α Ω ( z 1 , b 2 ) = Ω α ( z 1 , z 1 , b 2 ) + Ω α ( z 1 , b 2 , b 2 ) , for all α > 0 , and satisfies ;
Ω α ( z 1 , b 2 , c 3 ) Ω α s ( z 1 , b 2 , c 3 ) 2 Ω α ( z 1 , b 2 , c 3 ) , for all α > 0 , and 1 2 Ω α ( z 1 , b 2 , c 3 ) Ω α m ( z 1 , b 2 , c 3 ) 2 Ω α ( z 1 , b 2 , c 3 ) , for all α > 0 . Further, starting from a C * a v m M , ω on Z, we have ω α Ω s ( z 1 , b 2 ) = 4 3 ω α ( z 1 , b 2 ) and ω α Ω m ( z 1 , b 2 ) = 2 ω α ( z 1 , b 2 ) .
Definition 2.
Let Z Ω be a C * - a v m G M S . Then for each α > 0 ,
(1) 
Any sequence { a n } n N in Z Ω is convergent to a Z Ω with respect to A if, for any ϵ > 0 there exists N N such that for all n , m N , Ω α ( a , a n , a m ) ϵ .
Moreover, it is Ω-G-Cauchy if for all n , m , l N , Ω α ( a n , a m , a l ) ϵ .
(2) 
A mapping T is Ω-G-continuous with respect to A in B Z Ω if for every sequence { a n } n N B such that for all n N , Ω α ( a n , z , z ) ϵ , then for all n N , Ω α ( T a n , T z , T z ) ϵ .
(3) 
Z Ω is Ω-complete if any Ω-G-Cauchy sequence with respect to A is Ω-G-convergent.
(4) 
A subset B of Z Ω is Ω-G-bounded with respect to A if for each α > 0 and a 0 Z Ω
δ Ω ( B ) = s u p { Ω α ( a 0 , a , b ) ; a , b B } < ,
where, δ Ω ( B ) denotes the diameter of B in the C * - a v m G M S .
Proposition 1.
Let Z Ω be a C * - a v m G M S , for each α > 0 . Then
(1) 
{ a n } n N is a Ω-G-convergent to a with respect to A ;
(2) 
Ω α ( a n , a n , a ) θ as n ;
(3) 
Ω α ( a n , a , a ) θ as n ; and
(4) 
Ω α ( a n , a m , a ) θ as n , m .
are equivalent.
Proposition 2.
Let Z Ω be a C * - a v m G M S , for each α > 0 . Then
(1) 
{ a n } n N is a Ω-G-Cauchy with respect to A ; and
(2) 
Ω α ( a m , a n , a n ) θ as n , m
are equivalent.
Proposition 3.
Let ( Z , A , Ω ) be a C * - a v m G M S . For any z 1 , b 2 , c 3 , a Z , and α > 0 it follows:
(i) 
if Ω 2 α ( z 1 , b 2 , c 3 ) = θ then z 1 = b 2 = c 3 ;
(ii) 
Ω 2 α ( z 1 , b 2 , c 3 ) Ω α ( z 1 , z 1 , b 2 ) + Ω α ( z 1 , z 1 , c 3 ) ;
(iii) 
Ω 2 α ( z 1 , b 2 , b 2 ) 2 Ω α ( b 2 , z 1 , z 1 ) ;
(iv) 
Ω 2 α ( z 1 , b 2 , c 3 ) Ω α ( z 1 , a , c 3 ) + Ω α ( a , b 2 , c 3 ) ;
(v) 
Ω 2 α ( z 1 , b 2 , c 3 ) 2 3 ( Ω α ( z 1 , b 2 , a ) + Ω α ( z 1 , a , c 3 ) + Ω α ( a , b 2 , c 3 ) ) ;
(vi) 
Ω 4 α ( z 1 , b 2 , c 3 ) Ω α ( z 1 , a , a ) + Ω α ( b 2 , a , a ) + Ω α ( c 3 , a , a ) .
Definition 3.
Let Z Ω be a C * - a v m G M S , Ω α is said to be symmetric if Ω α ( z 1 , z 1 , b 2 ) = Ω α ( z 1 , b 2 , b 2 ) for all z 1 , b 2 Z Ω and α > 0 .
Example 1.
Let Z = { 0 , 1 , 2 } and consider, A = M 2 ( R ) . Let C A and *, be the involution map such that C * = C , define C = i , j = 1 2 | c i j | 2 . Clearly, A is a C * -algebra. For A = [ a i j ] 2 × 2 , B = [ b i j ] 2 × 2 M 2 ( R ) ; we denote A B if and only if a i j b i j .
Define Ω : ( 0 , ) × Z × Z × Z A by Ω α ( z 1 , b 2 , c 3 ) = d i a g ( g ( z 1 , b 2 , c 3 ) α , g ( z 1 , b 2 , c 3 ) α ) , for all z 1 , b 2 , c 3 Z and α > 0 , where
g ( z 1 , b 2 , c 3 ) = 0 i f z 1 = b 2 = c 3 , 1 i f ( z 1 , b 2 , c 3 ) { ( 0 , 0 , 1 ) , ( 0 , 0 , 2 ) , ( 1 , 1 , 2 ) } , 2 i f ( z 1 , b 2 , c 3 ) { ( 0 , 1 , 1 ) , ( 0 , 2 , 2 ) , ( 1 , 2 , 2 ) , ( 0 , 1 , 2 ) } .
Then it can be easily checked that Ω α is a C * - a v m G M S . Since,
Ω α ( 0 , 0 , 1 ) Ω α ( 0 , 1 , 1 ) ; Ω α ( 0 , 0 , 2 ) Ω α ( 0 , 2 , 2 ) ; Ω α ( 1 , 1 , 2 ) Ω α ( 1 , 2 , 2 ) ,
so Ω α is not symmetric (see [52]).
Now if we take g ( z 1 , b 2 , c 3 ) = | z 1 b 2 | + | b 2 c 3 | + | c 3 z 1 | , then it can be checked that Ω α is a C * - a v m G M S and symmetric.
Example 2.
For the Lebesgue measurable set E and Hilbert space H let, Z = L ( E ) , H = L 2 ( E ) and A = B ( H ) , the set of bounded linear operator on H. Define Ω : ( 0 , ) × Z × Z × Z B ( H ) + by
Ω α ( z 1 , b 2 , c 3 ) = β z 1 b 2 α + b 2 c 3 α + c 3 z 1 α z 1 , b 2 , c 3 Z , α > 0 ,
where β θ : H H is the multiplication operator defined by β θ ( Φ ) = θ . Φ, Φ H . Then ( Z Ω , B ( H ) , Ω ) is a Ω-G-complete C * - a v m G M S .
Example 3.
Let Z = l ( S ) and H = l 2 ( S ) , S ϕ , and A = B ( H ) . Define Ω : ( 0 , ) × Z × Z × Z B ( H ) + by
Ω α ( { f n } , { g n } , { l n } ) = β { f n } { g n } α + { g n } { l n } α + { l n } { f n } α { f n } , { g n } , { l n } Z , α > 0 ,
where β θ is described as in Example 2. Then ( Z Ω , B ( H ) , Ω ) is a Ω-G-complete C * - a v m G M S .
Example 4
(see [9]). Let Z = R and A = B ( H ) . Define Ω : ( 0 , ) × Z × Z × Z B ( H ) + by
Ω α ( z 1 , b 2 , c 3 ) = z 1 b 2 α + b 2 c 3 α + c 3 z 1 α 1 A z 1 , b 2 , c 3 Z , α > 0 .
Then ( Z Ω , B ( H ) , Ω ) is a Ω-G-complete C * - a v m G M S .
Definition 4
([2,12]). Define a continuous function H : A + × A + A for C * -algebra A . If for any A , B A + , satisfies:
(i) 
H ( A , B ) A ; and
(ii) 
H ( A , B ) = A A = θ or B = θ .
Then the function is called “ C * -class function”.
Definition 5
([2]). A tripled ( ψ , φ , H * ) where ψ : A + A + in Ψ (set of all continuous functions), φ : A + A + in Φ (the class of functions) and H * : A + × A + A . If for any A , B A + satisfies:
A B H * ( ψ ( A ) , φ ( A ) ) H * ( ψ ( B ) , φ ( B ) ) .
Then it is monotone.
Definition 6
([63]). Let ( Z , G ) be a G-metric space and T : Z Z . Then T is said to be G β ψ -contractive mapping of type A if there exist two functions β : Z × Z × Z [ 0 , ) and ψ F c o m ( c ) , family of ( c ) comparision function such that
β ( z 1 , z 2 , T z 1 ) G ( T z 1 , T z 2 , T 2 z 1 ) ψ ( G ( z 1 , z 2 , T z 1 ) ) , z 1 , z 2 Z .
According to Agarwal et al. [63] this type of contractive condition cannot be reduced to a quasi metric.
Asadi and Salimi [62] established the following theorem, which cannot be reduced to quasi metric space as well.
Theorem 1
([62]). Let ( Z , G ) be a G-metric space and T and S be two self-mappings on Z. For all z 1 , z 2 Z , nondecreasing and continuous function ψ and lower semicontinuous function ϕ; if it satisfies ψ ( G ( T z 1 , S T z 1 , T z 2 ) ) ψ ( G ( z 1 , S z 1 , z 2 ) ) ϕ ( G ( z 1 , S z 1 , z 2 ) ) . Then S and T have a common unique fixed point.

3. Main Results

Let ( Z Ω , A , Ω ) be a Ω -complete C * - a v m G M S , and ( T 1 , T 2 ) be two self-mappings on Z Ω , satisfying the conditions:
ψ ( Ω α ( T 1 a , T 1 b , T 1 b ) 1 A ) F * ( ψ ( M ( a , b , b ) ) , φ ( M ( a , b , b ) ) ,
for which, F * C * , ψ Ψ and φ Φ with strictly monotone ( ψ , φ , F * ) .
M ( a , b , b ) = q 2 Ω 2 α ( T 2 a , T 2 b , T 2 b ) 1 A + L 2 m i n { Ω α ( T 1 a , T 2 a , T 2 a ) , Ω α ( T 1 b , T 2 a , T 2 a ) , Ω α ( T 1 a , T 2 b , T 2 b ) , Ω α ( T 1 b , T 2 b , T 2 b ) } 1 A .
In the setting Ω α ( z 1 , b 2 , b 2 ) = ω α ( z 1 , b 2 ) the contractive condition reduces to ψ ( ω λ ( T 1 a , T 1 b ) 1 A ) F * ( ψ ( M ( a , b ) ) , φ ( M ( a , b ) ) , where
M ( a , b , b ) = M ( a , b ) = q 2 ω 2 α ( T 2 a , T 2 b ) 1 A + L 2 m i n { ω α ( T 1 a , T 2 a ) , ω α ( T 1 b , T 2 a ) , ω α ( T 1 a , T 2 b ) , ω α ( T 1 b , T 2 b ) } 1 A .
Proceeding as in ([59,60]) one can construct the same result in quasi C * - a v m M S instead of C * - a v m G M S .
Motivated by Theorem 1 [62], the following theorem’s contractive condition cannot be reduced to quasi C * - a v m M S .
Theorem 2.
Let ( Z Ω , A , Ω ) be a Ω-complete C * - a v m G M S , and T 1 and T 2 be two self-mappings on Z Ω , satisfying the condition: for each a , b Z Ω , q A with 0 < q < 1 , and Ω α ( T 1 a , T 2 T 1 a , T 1 b ) < ;
ψ ( Ω α ( T 1 a , T 2 T 1 a , T 1 b ) 1 A ) F * ( ψ ( q 2 Ω 2 α ( a , T 2 a , b ) 1 A ) , φ ( q 2 Ω 2 α ( a , T 2 a , b ) 1 A ) ) ,
for which, F * C * , ψ Ψ and φ Φ with strictly monotone ( ψ , φ , F * ) . Then T 1 and T 2 have a common unique fixed point in Z Ω .
Proof. 
Let a 0 Z Ω . Hence inductively a n + 1 = T 1 a n n = 0 , 1 , 2 , . . . .
ψ ( Ω α ( a n , T 2 a n , a n ) 1 A ) F * ( ψ ( q 2 Ω 2 α ( a n 1 , T 2 a n 1 , a n 1 ) 1 A ) , φ ( q 2 Ω 2 α ( a n 1 , T 2 a n 1 , a n 1 ) 1 A ) ) , ψ ( q 2 Ω 2 α ( a n 1 , T 2 a n 1 , a n 1 ) 1 A .
Since ψ is nondecreasing,
Ω α ( a n , T 2 a n , a n ) 1 A q 2 Ω 2 α ( a n 1 , T 2 a n 1 , a n 1 ) 1 A , q 2 Ω α ( a n 1 , T 2 a n 1 , a n 1 ) 1 A , . . . , q 2 n Ω α ( a 0 , T 2 a 0 , a 0 ) 1 A , 0 as n ( since q < 1 ) .
Now we show that { a n } n = 0 and { T 2 a n } n = 0 are Ω -G-Cauchy sequence. Suppose there exist ϵ > 0 and subsequence { a m ( k ) } and { a n ( k ) } with n ( k ) > m ( k ) > k > 0 such that
Ω α ( a n ( k ) , a m ( k ) , a m ( k ) ) 1 A Ω α 2 ( a n ( k ) , T 2 a m ( k ) , a m ( k ) ) 1 A + 2 Ω α 4 ( T 2 a m ( k ) , a m ( k ) , a m ( k ) ) 1 A .
Hence, lim k Ω α ( a n ( k ) , a m ( k ) , a m ( k ) ) = θ . Therefore { a n } n = 0 is a Ω -G-Cauchy sequence and lim n Ω α ( a n , l , l ) = θ , for all α > 0 and for some l Z Ω . Suppose there exist ϵ > 0 and subsequence { T 2 a m ( k ) } and { T 2 a n ( k ) } with n ( k ) > m ( k ) > k > 0 such that
Ω α ( T 2 a n ( k ) , T 2 a m ( k ) , T 2 a m ( k ) ) 1 A Ω α 2 ( a n ( k ) , T 2 a n ( k ) , a n ( k ) ) 1 A + 2 Ω α 4 ( T 2 a m ( k ) , a n ( k ) , a n ( k ) ) 1 A .
Hence, lim k Ω α ( T 2 a n ( k ) , T 2 a m ( k ) , T 2 a m ( k ) ) = θ . Therefore { T 2 a n } n = 0 is a Ω -G-Cauchy sequence and lim n Ω α ( T 2 a n , T 2 p , T 2 p ) = θ , for all α > 0 and for some p Z Ω .
Since Ω α ( a n , T 2 a n , a n ) 1 A 0 as n , so l = T 2 p .
Now,
ψ ( Ω α ( a n , T 2 a n , T 1 l ) 1 A ) = ψ ( Ω α ( T 1 a n 1 , T 2 T 1 a n 1 , T 1 l ) 1 A ) , F * ( ψ ( q 2 Ω α ( a n 1 , T 2 a n 1 , l ) 1 A ) , φ ( q 2 Ω α ( a n 1 , T 2 a n 1 , l ) 1 A ) ) , ψ ( q 2 Ω α ( a n 1 , T 2 a n 1 , l ) 1 A .
Since ψ is non decreasing,
Ω α ( a n , T 2 a n , T 1 l ) 1 A q 2 n Ω α ( a 0 , T 2 a 0 , l ) 1 A , 0 as n ( since q < 1 ) .
Hence l = T 1 l = T 2 p .
ψ ( Ω α ( l , T 2 l , l ) 1 A ) = ψ ( Ω α ( T 1 l , T 2 T 1 l , T 1 l ) 1 A ) , F * ( ψ ( q 2 Ω α ( l , T 2 l , l ) 1 A ) , φ ( q 2 Ω α ( l , T 2 l , l ) 1 A ) ) , ψ ( q 2 Ω α ( l , T 2 l , l ) 1 A .
Since ψ is non decreasing and q < 1 , so Ω α ( l , T 2 l , l ) = θ . Hence l = T 1 l = T 2 l .
Uniqueness:
If possible, let r Z Ω such that r = T 1 r = T 2 r .
ψ ( Ω α ( l , T 2 l , r ) 1 A ) = ψ ( Ω α ( T 1 l , T 2 T 1 l , T 1 r ) 1 A ) , F * ( ψ ( q 2 Ω α ( l , T 2 l , r ) 1 A ) , φ ( q 2 Ω α ( l , T 2 l , r ) 1 A ) ) , ψ ( q 2 Ω α ( l , T 2 l , r ) 1 A .
Clearly, l = r . Hence T 1 and T 2 have a common unique fixed point r. □
Corollary 1.
Let ( Z Ω , A , Ω ) be a Ω-complete C * - a v m G M S , and T be a self-mapping on Z Ω , satisfying the condition: for each a , b Z Ω , q A with 0 < q < 1 , and Ω α ( T a , T 2 a , T b ) < ;
ψ ( Ω α ( T a , T 2 a , T b ) 1 A ) F * ( ψ ( q 2 Ω 2 α ( a , T a , b ) 1 A ) , φ ( q 2 Ω 2 α ( a , T a , b ) 1 A ) ) ,
for which, F * C * , ψ Ψ and φ Φ with strictly monotone ( ψ , φ , F * ) . Then T has a unique fixed point in Z Ω .
Example 5.
As in Example 2, let Z = l ( S ) , H = l 2 ( S ) , and A = B ( H ) . Define Ω : ( 0 , ) × Z × Z × Z B ( H ) + by
Ω α ( { f m } , { g n } , { h l } ) = β { f m } { g n } α + { g n } { h l } α + { h l } { f m } α { f m } , { g n } , { h l } Z ;
α > 0 , m , n , l N . Then ( Z Ω , B ( H ) , Ω ) is a Ω-G-complete C * - a v m G M S .
Proof. 
Define T 1 : Z Ω Z Ω by T 1 ( { f m } ) = { m + 1 m 2 , 0 , 0 , } where { f m } = { m + 1 m , 0 , 0 , } Z Ω , m N . (see [70]) Again define T 2 : Z Ω Z Ω by T 2 ( { g m } ) = { m + 1 m , 0 , 0 , } where { g m } = { ( m + 1 m ) 2 , 0 , 0 , } Z Ω , m N .
Suppose ψ and φ are two self-mappings on A + such that ψ ( A ) = 2 A and φ ( A ) = A for all A A + , and
F * : A + × A + A , F * ( A , B ) = A B .
Then ( ψ , φ , F * ) is strictly monotone. For all { f m } , { f n } Z Ω = l ( S ) , and α > 0 we have clearly,
Ω α ( T 1 ( { f m } ) , T 2 T 1 ( { f m } ) , T 1 ( { f n } ) < ; n , m N ( m n ) .
For every q , L A with 0 < q < 1 , L 0 , we have
ψ ( Ω α ( T 1 { f m } , T 2 T 1 { f m } , T 1 { f n } ) 1 A ) F * ( ψ ( q 2 { f m } , T 2 { f m } , { f n } ) , φ ( q 2 { f m } , T 2 { f m } , { f n } ) .
Hence it satisfies all the conditions of Theorem 2. So, T 1 and T 2 have common unique fixed points { 1 , 0 , 0 , } . □

4. Ulam–Hyers Stability Results in C*-avGMS

Let ( Z , A , Ω ) be a C * - a v m G M S and T : Z Ω Z Ω be a mapping. Let set of n fixed point equations be
T n z = z , n N
called a generalized Ulam–Hyers stability if
(i)
there exists a increasing mapping ξ : R + R + with continuity at 0 and ξ ( 0 ) = 0 ;
(ii)
for any ϵ > 0 and for each z * Z Ω an ϵ solution of the Equation (1), which satisfies
Ω α ( z * , T n z * , T z * ) ϵ , n N .
There exists a solution x * Z Ω of (1) such that Ω α ( z * , x * , x * ) ξ ( ϵ ) . Then for any s R + and k > 0 ; ξ ( s ) = k . s implies Ulam–Hyers stability of (1).
In the following theorem, two fixed point equations, T z = z and T 2 z = z are considered.
Theorem 3.
Let ( Z Ω , A , Ω ) be a Ω-complete C * - a v m G M S satisfying all the condition of Corollary 1. Moreover,
(a) 
ψ ( Ω α ( T a , T 2 a , T b ) 1 A + K ) F * ( ψ ( q 2 Ω 2 α ( a , T a , b ) 1 A + K ) , ϕ ( q 2 Ω 2 α ( a , T a , b ) 1 A + K ) , K A + .
(b) 
Ω α ( T z * , T z * , z * ) 1 A ( 1 q 2 ) γ 1 A , α > 0 ; γ > 0 .
Then Equation (1) is Ulam–Hyers stable.
Proof. 
From Corollary 1 F i x ( T ) = { x * } . Let ϵ > 0 and z * Z Ω be a solution of Equation (2)
ψ ( Ω α ( x * , x * , z * ) 1 A ) = ψ ( Ω α ( x * , T x * , z * ) 1 A ) = ψ ( Ω α ( T x * , T 2 x * , z * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T z * ) 1 A + Ω α 2 ( T z * , T z * , z * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T z * ) 1 A + ( 1 q 2 ) γ 1 A ) , F * ( ψ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ( 1 q 2 ) γ 1 A ) , φ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ( 1 q 2 ) γ 1 A ) ) , ψ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ( 1 q 2 ) γ 1 A ) ,
this implies that Ω α ( x * , x * , z * ) 1 A γ 1 A . Hence Equation (1) is Ulam–Hyers stable. □
Theorem 4.
Let ( Z Ω , A , Ω ) be a Ω-complete C * - a v m G M S satisfying all the conditions of Theorem 3 with (a). Moreover, the onto function π : [ 0 , ) [ 0 , ) such that π ( r ) = λ r is strictly increasing. Then
(a) 
Equation (1) is generalized Ulam–Hyers stable.
(b) 
F i x ( T ) = { x * } and if { z n } Z Ω , n N are such that Ω α ( z n , T z n , T z n ) 1 A 0 a s n , then z n x * a s n . (well-posed)
(c) 
If S : Z Ω Z Ω such that Ω α ( T z , T z , S z ) 1 A η 1 A , z Z Ω η [ 0 , ) then p * F i x ( S ) Ω α ( x * , p * ) 1 A π 1 ( α 1 q 2 η 1 A ) .
Proof. 
(a) Let F i x ( T ) = { x * } , ϵ > 0 and z * Z Ω .
ψ ( Ω α ( x * , x * , z * ) 1 A ) = ψ ( Ω α ( x * , T x * , z * ) 1 A ) = ψ ( Ω α ( T x * , T 2 x * , z * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T z * ) 1 A + Ω α 2 ( T z * , T z * , z * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T z * ) 1 A + ϵ 1 A ) , F * ( ψ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ϵ 1 A ) , φ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ϵ 1 A ) ) , ψ ( q 2 Ω α ( x * , T x * , z * ) 1 A + ϵ 1 A ) ,
this implies that Ω α ( x * , x * , z * ) 1 A 1 1 q 2 ϵ 1 A . So,
π ( Ω α ( x * , x * , z * ) 1 A ) = λ Ω α ( x * , x * , z * ) 1 A λ 1 q 2 ϵ 1 A .
Therefore we have, Ω α ( x * , x * , z * ) 1 A π 1 ( λ 1 q 2 ϵ 1 A ) . Hence, Equation (1) is generalized Ulam–Hyers stable.
(b) Let F i x ( T ) = { x * } , ϵ > 0 and { z n } Z Ω .
ψ ( Ω α ( x * , T x * , z n ) 1 A ) ψ ( Ω α 2 ( z n , T z n , T z n ) 1 A + Ω α 2 ( T x * , T 2 x * , T z n ) 1 A ) , F * ( ψ ( q 2 Ω α ( x * , T x * , z n ) 1 A + Ω α 2 ( z n , T z n , T z n ) 1 A ) , φ ( q 2 Ω α ( x * , T x * , z n ) 1 A + Ω α 2 ( z n , T z n , T z n ) 1 A ) ) , ψ ( q 2 Ω α ( x * , T x * , z n ) 1 A + Ω α 2 ( z n , T z n , T z n ) 1 A ) ,
this implies that
Ω α ( x * , x * , z n ) 1 A 1 1 q 2 Ω α 2 ( z n , T z n , T z n ) 1 A , 0 a s n .
Hence, we have z n x * a s n .
(c) Let F i x ( T ) = { x * } and p * F i x ( S ) .
ψ ( Ω α ( x * , T x * , p * ) 1 A ) = ψ ( Ω α ( T x * , T 2 x * , p * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T p * ) 1 A + Ω α 2 ( T p * , T p * , p * ) 1 A ) , ψ ( Ω α 2 ( T x * , T 2 x * , T p * ) 1 A + Ω α 2 ( T p * , T p * , S p * ) 1 A ) , F * ( ψ ( q 2 Ω α ( x * , T x * , p * ) 1 A + η 1 A ) , φ ( q 2 Ω α ( x * , T x * , p * ) 1 A + η 1 A ) ) , ψ ( q 2 Ω α ( x * , T x * , p * ) 1 A + η 1 A ) ,
this implies that Ω α ( x * , x * , p * ) 1 A 1 1 q 2 η 1 A . So,
π ( Ω α ( x * , x * , p * ) 1 A ) = λ Ω α ( x * , x * , p * ) 1 A α 1 q 2 η 1 A .
Therefore we have, Ω α ( x * , x * , p * ) 1 A π 1 ( λ 1 q 2 η 1 A ) . □

5. Applications

Shen et al. [9] provided an application for a type of differential equation in C * - a v G M S . Pathak et al. [71] for common fixed point and Moeini et al. [2] for C * - a v m G M S provided applications to nonlinear integral equations. All of the above inspired the following application (see also [13,14,23,37,56,68,69,72,73,74]).
First remind, as in Example 2, for all α > 0 and f , g , h L ( E ) , define Ω : ( 0 , ) × L ( E ) × L ( E ) × L ( E ) B ( L 2 ( E ) ) + by
Ω α ( f , g , h ) = β f g α + g h α + h f α .
Then ( L ( E ) Ω , B ( L 2 ( E ) ) , Ω ) is a Ω -G-complete C * - a v m G M S .
Theorem 5.
Consider the following system of nonlinear integral equations:
z ( r ) = I ( r ) + v ( r , z ( r ) ) + μ E t ( r , s ) q ( s , z ( s ) ) d s ,
where r , s E ; μ F ; z , I L ( E ) Ω and v ( r , z ( r ) , t ( r , s ) , q ( s , z ( s ) are all real or complex valued functions, which are measurable in r and s on E. Suppose
(i) 
s u p s E E | t ( r , s ) | d r = M < + ;
(ii) 
For all s E ; z 1 , z 2 L ( E ) Ω and v ( s , z 1 ( s ) ) , v ( s , z 2 ( s ) ) L ( E ) Ω , there exists N > 1 such that
| v ( s , z 1 ( s ) v ( s , z 2 ( s ) | 2 2 N | z 1 ( s ) z 2 ( s ) | ;
(iii) 
For all s E ; z 1 , z 2 L ( E ) Ω and q ( s , z 1 ( s ) , q ( s , z 2 ( s ) L ( E ) Ω , there exists L > 0 such that | q ( s , z 1 ( s ) q ( s , z 2 ( s ) | L | z 1 ( s ) z 2 ( s ) | ;
(iv) 
For a nonempty set B consists of f , g L ( E ) Ω and K : [ 0 , 1 ] × [ 0 , 1 ] × R + R + , such that v ( r , g ( r ) ) = g ( r ) I ( r ) α E t ( r , s ) q ( s , g ( s ) ) d s = f ( r ) , and | I ( r ) + α E t ( r , s ) q ( s , f ( r ) I ( r ) μ E t ( r , s ) q ( s , f ( s ) ) d s ) d s | 1 + | μ | M L 2 2 N | f ( r ) v ( r , f ( r ) ) | .
Then Equation (3) has a unique solution for each μ F with 1 + | μ | M L N < 1 .
Proof. 
Define T 1 , T 2 : Z Ω Z Ω by
T 1 z ( r ) = z ( r ) I ( r ) μ E t ( r , s ) q ( s , z ( s ) ) d s , T 2 z ( r ) = v ( r , z ( r ) ) .
Set q 2 = 1 + | μ | M L N ( < 1 ) . Let ψ and φ be two self-mappings on B ( L 2 ( E ) ) + such that ψ ( A 1 ) = 1 2 A 1 and φ ( A 2 ) = 1 4 A 2 for all A 1 , A 2 B ( L 2 ( E ) ) + , and
F * : B ( L 2 ( E ) ) + × B ( L 2 ( E ) ) + B ( L 2 ( E ) ) , F * ( A 1 , A 2 ) = 1 2 A 1 .
Clearly, ( ψ , φ , F * ) is strictly monotonic. Let f , g B
ψ ( Ω α ( T 1 f , T 2 T 1 f , T 1 g ) 1 A ) = 1 2 Ω α ( T 1 f , T 2 T 1 f , T 1 g ) 1 A , = 1 2 β | T 1 f T 2 T 1 f α | + | T 2 T 1 f T 1 g α | + | T 1 g T 1 f α | 1 A , = 1 2 T 1 f T 2 T 1 f α 1 A + T 2 T 1 f T 1 g α 1 A + T 1 f T 1 g α 1 A ,
= T 1 f T 2 T 1 f α 1 A + 1 α sup s E ( f g ) + μ E t ( r , s ) ( q ( s , g ( s ) ) q ( s , f ( s ) ) ) d s 1 A , T 1 f T 2 T 1 f α 1 A + 1 + | μ | M L α f g 1 A , T 1 f T 2 T 1 f α 1 A + 1 + | μ | M L 2 2 N v ( r , f ( r ) ) v ( r , g ( r ) ) α 1 A , I ( r ) + α E t ( r , s ) q ( s , f ( r ) I ( r ) μ E t ( r , s ) q ( s , f ( s ) ) d s ) d s α 1 A + 1 + | μ | M L 2 2 N T 2 f T 2 g α 1 A , 1 2 2 q 2 ( f T 2 f α 1 A + T 2 f g α 1 A + g f α 1 A ) , 1 2 2 q 2 Ω α ( f , T 2 f , g ) 1 A , F * ( ψ ( q 2 Ω α ( f , T 2 f , g ) 1 A ) , ϕ ( q 2 Ω α ( f , T 2 f , g ) 1 A ) ) .
By Theorem 2, we have a unique solution to the nonlinear integral Equation (3). □
Let Z Ω be a C * - a v m G M S and Q be a Banach space and P Q . Define Θ : V × P V and D : V × P × R R be two functions, where V Z Ω . Let B ( V ) be the set of Banach spaces consisting all real functional on V. Define a norm, a = s u p r V | a ( r ) | and consider the functional equation arising in dynamic programming ([75,76])
a ( r ) = s u p s P { D ( r , s , a ( Θ ( r , s ) ) ) }
where a B ( V ) . Define a C * - a v m G M S on B ( V ) as in Example 4 by
Ω α ( f , g , h ) = f ( r ) g ( r ) α + g ( r ) h ( r ) α + h ( r ) f ( r ) α 1 A ,
for all α > 0 and f , g , h B ( V ) .
Theorem 6.
Let T be a self-mapping on B ( V ) , defined by T f ( r ) = s u p s P { D ( r , s , f ( Θ ( r , s ) ) ) } , and T 2 f ( r ) = s u p s P { D ( r , s , T f ( Θ ( r , s ) ) ) } . If,
| D ( r , s , f ( Θ ( r , s ) ) ) D ( r , s , g ( Θ ( r , s ) ) ) | q 2 2 | f ( s ) g ( s ) | 1 A , | D ( r , s , T f ( Θ ( r , s ) ) ) D ( r , s , g ( Θ ( r , s ) ) ) | q 2 2 | T f ( s ) g ( s ) | 1 A , | D ( r , s , T f ( Θ ( r , s ) ) ) D ( r , s , f ( Θ ( r , s ) ) ) | q 2 2 | T f ( s ) f ( s ) | 1 A , q < 1 .
Then Equation (4) has unique bounded solution.
Proof. 
Let r V and f ( r ) B ( V ) . Then there exists s 1 , s 2 P and ϵ > 0 such that
T f ( r ) D ( r , s 1 , f ( Θ ( r , s 1 ) ) ) + ϵ ,
T 2 f ( r ) D ( r , s 1 , T f ( Θ ( r , s 1 ) ) ) + ϵ ,
T g ( r ) D ( r , s 2 , g ( Θ ( r , s 2 ) ) ) + ϵ ,
T f ( r ) D ( r , s 2 , f ( Θ ( r , s 2 ) ) ) ,
T 2 f ( r ) D ( r , s 2 , T f ( Θ ( r , s 2 ) ) ) ,
T g ( r ) D ( r , s 1 , g ( Θ ( r , s 1 ) ) ) .
From (5) and (10) we have
T f ( r ) T g ( r ) D ( r , s 1 , f ( Θ ( r , s 1 ) ) ) D ( r , s 1 , g ( Θ ( r , s 1 ) ) ) + ϵ , | D ( r , s 1 , f ( Θ ( r , s 1 ) ) ) D ( r , s 1 , g ( Θ ( r , s 1 ) ) ) | + ϵ , q 2 2 | f ( s ) g ( s ) | 1 A + ϵ .
Again, from (7) and (8)
T g ( r ) T f ( r ) q 2 2 | f ( s ) g ( s ) | 1 A + ϵ .
We can write
T f ( r ) T g ( r ) α 1 A q 2 f ( s ) g ( s ) 2 α 1 A ,
T 2 f ( r ) T f ( r ) α 1 A q 2 T f ( s ) T ( s ) 2 α 1 A ,
T 2 f ( r ) T g ( r ) α 1 A q 2 T f ( s ) g ( s ) 2 α 1 A .
Clearly, from (11)–(13) we get, Ω α ( T f , T 2 f , T g ) q 2 Ω 2 α ( f , T f , g ) . So from Corollary 1, we can conclude that the functional equation has a unique solution (4). □

6. Conclusions

In this paper, we introduce C * - a v m G M S with some properties and examples. Using “ C * -class function” we studied some fixed point results. To validate the results, we provided some examples and applications. The stability of a fixed point result is checked by Ulam–Hyers stability. The following are some of the study’s most significant observations:
(i)
It is observed that all the results in G-metric spaces, modular G-metric spaces, C * - a v G M S , and C * - a v m G M S cannot be obtained directly in the setting of quasi metric of these spaces.
(ii)
The results produced in C * - a v m G M S extend and generalize certain previous findings in the literature.
(iii)
Applications in nonlinear integral equations and functional equations in dynamic programming of the space C * - a v m G M S and examples in C * - a v m G M S pave the way for a realistic result.
(iv)
The defined Ulam–Hyers stability for C * - a v m G M S is used to check the stability problem of fixed point equations, and can also be used to check stability for fixed point equations in G-metric spaces, modular G-metric spaces, and C * - a v G M S , respectively.
(v)
The results in C * - a v m G M S can be used to study a wide range of nonlinear problems.
Limitation and Future Perspectives: If the contractivity condition of the fixed point result on a C * - a v m G M S can be simplified to two variables then an analogous fixed point result in the context of C * - a v G M S can be established easily. Some applications of C * - a v m G M S may include differential equations, entropy analysis, integral equations, integrodifferential equations, noncommutative geometry, functional equations, quantum mechanics, string theory, etc. The presented results might actually be helpful to researchers in the literature of fixed point theory and further investigation into different generalized modular metric spaces and generalized metric spaces in the setting of C * -algebra.

Author Contributions

Conceptualization, D.D., L.N.M. and V.N.M.; methodology, D.D., A.D. and H.G.R.; software, A.D., F.E.L.M. and E.G.F.; validation, H.G.R.; formal analysis, A.D. and H.G.R.; investigation, H.G.R., A.D. and T.A.R.-d.; resources, H.G.R., A.D., F.E.L.M. and E.G.F.; data curation, A.D. and D.D.; writing—original draft preparation, D.D., L.N.M. and V.N.M.; writing—review and editing, A.D., H.G.R. and E.G.F.; visualization, H.G.R. and F.E.L.M.; project administration, V.N.M.; funding acquisition, H.G.R., F.E.L.M. and T.A.R.-d. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by Universidad Autonoma de Zacatecas, Mexico and CONACyT, Mexico.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data are included within the article.

Acknowledgments

The authors are extremely grateful to the anonymous reviewers for their keen reading, insightful recommendations, and constructive comments for the improvement of the manuscript. All the authors acknowledges “Universidad Autonoma de Zacatecas, Mexico and CONACyT, Mexico” for financial support of this work.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
m G M S Modular G-Metric Spaces
C * - a v M S C * -algebra valued Metric Spaces
C * - a v b - M S C * -algebra valued b-Metric Spaces
C * - a v S M S C * -algebra valued S-Metric Spaces
C * - a v G M S C * -algebra valued G-Metric Spaces
C * - a v m M S C * -algebra valued modular Metric Spaces
C * - a v m G M S C * -algebra valued modular G-Metric Spaces

References

  1. Douglas, R. Banach Algebra Techniques in Operator Theory; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
  2. Moeini, B.; Ansaari, A.H.; Park, C. JHR-operator pairs in C*-algebra-valued modular metric spaces and related fixed point results via C*-class functions. J. Fixed Point Theory Appl. 2018, 20, 1–23. [Google Scholar] [CrossRef]
  3. Ma, Z.; Jiang, L.; Sun, H. C*-Algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
  4. Ma, Z.; Jiang, L.; Sun, H. C*-Algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
  5. Alsulami, H.H.; Agarwal, R.P.; Karapınar, E.; Khojasteh, F. A short note on C*-valued contraction mappings. J. Inequal. Appl. 2016, 2016, 50. [Google Scholar] [CrossRef] [Green Version]
  6. Kadelburg, Z.; Radenovic, S. Fixed point results in C*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 2016, 53. [Google Scholar] [CrossRef] [Green Version]
  7. Mustafa, R.; Omran, S.; Nguyen, Q.N. Fixed Point Theory Using ψ-Contractive Mapping in C*-Algebra Valued B-Metric Space. Mathematics 2021, 9, 92. [Google Scholar] [CrossRef]
  8. Kumar, D.; Richi, D.; Park, C.; Lee, J.R. On fixed point in C*-algebra valued metric spaces using C*-class function. Int. J. Nonlinear Anal. Appl. 2021, 12, 1157–1161. [Google Scholar]
  9. Shen, C.; Jiang, L.; Ma, Z. C*-Algebra-valued G-metric spaces and related fixed point theorems. J. Funct. Spaces 2018, 2018, 3257189. [Google Scholar] [CrossRef] [Green Version]
  10. Moeini, B.; Isik, H.; Ayadi, H. Related Fixed Point Results via C*-Class Functions on C*-Algebra Valued Gb-Metric Spaces. Carpathian Math. Publ. 2020, 12, 94–106. [Google Scholar] [CrossRef]
  11. Ege, M.E.; Alaca, C. C*-Algebra Valued S-Metric Spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 165–177. [Google Scholar]
  12. Chankad, S.; Kumar, D.; Park, C. C*-algebra valued partial metric space and fixed point theorems. Proc. Math. Sci. 2019, 129, 37. [Google Scholar]
  13. Asim, M.; Imad, M. C*-Algebra Valued in Symmetric Spares and Fixed Point Results with an Application. UPB Sci. Bull. Ser. A 2020, 82, 207–218. [Google Scholar]
  14. Asim, M.; Imad, M. C*-Algebra Valued Extended b-Metric Spares and Fixed Point Results with an Application. Korean J. Math. 2020, 28, 17–30. [Google Scholar]
  15. Das, D.; Goswami, N.; Mishra, V.N. Some Results on Fixed Point Theorems in Banach Algebras. Int. J. Anal. Appl. 2017, 13, 32–40. [Google Scholar]
  16. Das, D.; Goswami, N.; Mishra, V.N. Some Results on the Projective Cone Normed Tensor Product Spaces Over Banach Algebras. Bol. Soc. Parana. Mat. 2020, 38, 197–221. [Google Scholar] [CrossRef]
  17. Das, D.; Mishra, V.N.; Mishra, L.N. C*-Algebra Valued Modular S-Metric Spaces with Applications in Fixed Point Theory. Tbil. Math. J. 2021, 14, 111–126. [Google Scholar]
  18. Dung, N.V.; Le Hung, V.T.; Dolicanin-Djekic, D. An equivalence of results in C*-algebra valued b-metric and b-metric spaces. Appl. Gen. Topol. 2017, 18, 241–253. [Google Scholar] [CrossRef] [Green Version]
  19. Eshaghi, M.; Abbaszadeh, S. Approximate generalized derivations close to derivations in Lie C*-algebras. J. Appl. Anal. 2015, 21, 37–43. [Google Scholar] [CrossRef]
  20. Gordji, M.E.; Khodaei, H. A fixed point technique for investigating the stability of (α,β,γ)-derivations on Lie C*-algebras. Nonlinear Anal. 2013, 76, 52–57. [Google Scholar] [CrossRef]
  21. Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D ′(c)s. In Engineering Mathematics II; Silvestrov, S., Rancic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 337–353. [Google Scholar]
  22. Kalpana, G.; Tasneem, Z.S. C*-Algebra Valued Rectangular b-Metric Spaces and Some Fixed Point Theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 2198–2208. [Google Scholar] [CrossRef] [Green Version]
  23. Mlaiki, N.; Asim, M.; Imdad, M. C*-Algebra Valued Partial b-Metric Spaces and Fixed Point Results with an Application. Mathematics 2020, 8, 1381. [Google Scholar] [CrossRef]
  24. Mukhamedov, F.; Ohmura, K.; Watanabe, N. Rényi Entropy on C*-Algebras. J. Stoch. Anal. 2020, 1, 1–13. [Google Scholar]
  25. Sarma, A.; Goswami, N.; Mishra, V.N. Some results for a class of Extended centralizers on C*-algebras. Dis. Math. Algorithms Appl. 2020, 12, 2050087. [Google Scholar] [CrossRef]
  26. Størmer, E. Entropy in C*-algebra. In Classification Nueclear C*-Algebras, Entropy in Operator Algebras; Rørdem, M., Størmer, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 160–163. [Google Scholar]
  27. Ozer, O.; Omran, S. On the generalized C*-valued metric spaces related with Banach fixed point theory. Int. J. Adv. Appl. Sci. 2017, 4, 35–37. [Google Scholar] [CrossRef] [Green Version]
  28. Zhang, L.; Bhatti, M.M.; Marin, M.; Mekheimer, K.S. Entropy Analysis on the Blood Flow Through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles. Entropy 2020, 22, 1070. [Google Scholar] [CrossRef]
  29. Chistyakov, V.V. Modular metric spaces generated by F modulars. Folia Math. 2008, 14, 3–25. [Google Scholar]
  30. Chistyakov, V.V. Modular metric spaces I basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
  31. Zhu, Z.; Chen, R. Asymptotic pointwise contractions in modular metric spaces. Nonlinear Funct. Anal. Appl. 2013, 18, 33–38. [Google Scholar]
  32. Okeke, G.A.; Francis, D.; de la Sen, M. Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications. Heliyon 2020, 6, e04785. [Google Scholar] [CrossRef]
  33. Shateri, T.L. C*-algebra-valued modular spaces and fixed point theorems. J. Fixed Point Theory Appl. 2017, 19, 1551–1560. [Google Scholar] [CrossRef]
  34. Ege, M.E.; Alaca, C. Some results for Modular b-metric spaces and an aplication to system of linear equations. Azerbaijan J. Math. 2018, 8, 3–14. [Google Scholar]
  35. Moeini, B.; Ansaari, A.H.; Park, C. C*-Algebra-Valued Modular Metric Spaces and Related Fixed Point Results. 2017, Volume 2017, pp. 1–10. Available online: https://www.researchgate.net/publication/322554371 (accessed on 16 August 2021).
  36. Moeini, B.; Ansaari, A.H. Common fixed points for C*-algebra-valued modular metric spaces via C*-class functions with application. arXiv 2017, arXiv:1708.01254. [Google Scholar]
  37. Das, D.; Mishra, L.N. Some Fixed Point Results for JHR Operator Pairs in C*-Algebra Valued Modular b-Metric Spaces via C*-Class Functions with applications. Adv. Stud. Contemp. Math. 2019, 29, 283–400. [Google Scholar]
  38. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
  39. Ulam, S.M. Problems in Modern Mathematics; John Wiley & Sons: New York, NY, USA, 1964. [Google Scholar]
  40. Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed point approach. Aequationes Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
  41. Bota-Boriceanu, M.F.; Petruşel, A. Ulam-Hyers stability for operatorial equations. Analele Stiintifice Ale Univ. 2011, 2011 57, 65–74. [Google Scholar] [CrossRef]
  42. Bota, M.F.; KarapJnar, E.; Mleşiniţe, O. Ulam-Hyers Stability Results for Fixed Point Problems via α-μ-Contractive Mapping in (b)-Metric Space. Abstr. Appl. Anal. 2013, 2013, 825293. [Google Scholar] [CrossRef] [Green Version]
  43. Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
  44. Haokip, N.; Goswami, N. Stability of Additive Quadratic Functional Equation. J. Nonlinear Sci. Appl. 2020, 9, 8443–8454. [Google Scholar] [CrossRef]
  45. Kim, S.S.; Cho, Y.J.; Gordgi, M.E. On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations. J. Inequalities Appl. 2012, 2012, 186. [Google Scholar] [CrossRef] [Green Version]
  46. Lee, Y.H. On the Hyers-Ulam-Rassias Stability of a General Quintic Functional Equation and a General Sextic Functional Equation. Mathematics 2019, 7, 510. [Google Scholar] [CrossRef] [Green Version]
  47. Petru, T.P.; Petruşel, A.; Yao, J.C. Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 2011, 15, 2195–2212. [Google Scholar] [CrossRef]
  48. Phiangsungnoen, S.; Wutiphol Sintunavarat, W.; Kumam, P. Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 188. [Google Scholar] [CrossRef] [Green Version]
  49. Rus, I.A. The theory of a metrical fixed point theorem: Theoretical and applicative relevances. Fixed Point Theory Appl. 2008, 9, 541–559. [Google Scholar]
  50. Tunç, C.; Biçer, E. Hyers-Ulam-Rassias Stability for a First Order Functional Differential Equation. J. Math. Fund. Sci. 2015, 47, 143–153. [Google Scholar] [CrossRef] [Green Version]
  51. Mustaafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  52. Agarwal, R.P.; Kadelburg, Z.; Radenović, S. On coupled fixed point results in asymmetric G-metric spaces. J. Inequal. Appl. 2013, 2013, 528. [Google Scholar] [CrossRef] [Green Version]
  53. Ansari, A.H.; Barakat, M.A.; Aydi, H. New Approach for Common Fixed Point Theorems via C-Class Functions in Gp-Metric Spaces. J. Funct. Spaces 2017, 2017, 2624569. [Google Scholar]
  54. Manro, S.; Kumar, S.; Bhatia, S.S. Weakly Compatiable Maps of Type(A) in G-Metric Space. Demonstr. Math. 2020, XLV, 901–908. [Google Scholar]
  55. Manro, S.; Bhatia, S.S.; Kumar, S.; Vetro, C. A common fixed point theorem for two weakly compatible pairs in G-metric spaces using the property E.A. Fixed Point Theory Appl. 2013, 2013, 41. [Google Scholar] [CrossRef] [Green Version]
  56. Rashwan, R.A.; Saleh, S.M. Solution of Nonlinear Integral Equations Via Fixed Point Theorems in G-metric Spaces. Int. J. Appl. Math. Res. 2014, 3, 561–571. [Google Scholar] [CrossRef] [Green Version]
  57. Salimia, P.; Hussainb, N.; Roldanc, A.; Karapınard, E. On Modified α-ϕ asymmetric Meir-Keeler Contractive Mappings. Filomat 2014, 28, 1855–1869. [Google Scholar] [CrossRef]
  58. Shatanwari, W. Some fixed Point Theorems in Ordered G-Metric spaces with applications. Abstr. Appl. Anal. 2011, 2011, 126205. [Google Scholar]
  59. Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef] [Green Version]
  60. Samet, B.; Vetro, C.; Vetro, F. Remarks on G-metric Spaces. Int. J. Anal. 2013, 2013, 917158. [Google Scholar] [CrossRef] [Green Version]
  61. Asadi, M.; Karapinar, E.; Salimi, P. A new approach to G-metric and related fixed point theorems. J. Inequalities Appl. 2013, 2013, 454. [Google Scholar] [CrossRef] [Green Version]
  62. Asadi, M.; Salimi, P. Some fixed point and common fixed point theorems on G-metric spaces. Nonlinear Funct. Anal. Appl. 2016, 21, 523–530. [Google Scholar]
  63. Agarwal, R.P.; Karapınar, E.; O’Regan, D.; Roldan-Lopez-de-Hierro, A.F. (Eds.) New Approaches to Fixed Point Results on G-Metric Spaces. In Fixed Point Theory in Metric Type Spaces; Springer: Cham, Switzerland, 2015; pp. 199–218. [Google Scholar]
  64. Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
  65. Dung, N.V.; Hieu, N.T.; Radojevic, S. Fixed point theorems for g-monotone maps on partially ordered S-metric spaces. Filomat 2014, 28, 1885–1898. [Google Scholar]
  66. Azadifar, B.; Maramaei, M.; Sadeghi, G. On the modular G-metric spaces and fixed point theorems. J. Nonlinear Sci. Appl. 2013, 6, 293–304. [Google Scholar] [CrossRef] [Green Version]
  67. Azadifar, B.; Maramaei, M.; Sadeghi, G. Common fixed point theorems in modular G-metric spaces. Nonlinear Anal. Appl. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
  68. Okeke, G.A.; Francis, D. Fixed point theorems for Geraghtytype mappings applied to solving nonlinear Volterra-Fredholm integral equations in modular G-metric spaces. Arab. J. Math. Sci. 2020, 27, 214–234. [Google Scholar]
  69. Okeke, G.A.; Francis, D. Fixed point theorems for asymptotically T-regular mappings in preordered modular G-metric spaces applied to solving nonlinear integral equations. arXiv 2021, arXiv:2104.11995v1. [Google Scholar]
  70. Patir, B.; Goswami, N.; Mishra, V.N. Some Results on Fixed Point for a Class of Generalized Nonexpansive Mappings. Fixed Point Theory Appl. 2018, 19, 19. [Google Scholar] [CrossRef]
  71. Pathak, H.K.; Khan, M.S.; Tiwari, R. A Common Fixed Point Theorem and its application to nonlinear integral equations. Comp. Math. Appl. 2007, 53, 961–971. [Google Scholar] [CrossRef] [Green Version]
  72. Marin, M.; Othman, M.I.A.; Seadway, A.R.; Carstea, C. A Domain of Influence in the Moore-Gibson-Thompson Theory of Dipolar Bodies. J. Taibah Univ. Sci. 2020, 14, 653–660. [Google Scholar] [CrossRef]
  73. Sarma, A.; Goswami, N.; Das, D. Common Fixed Point Result in C*-algebra Valued Modular Metric Spaces with an Application. AAMS 2019, 19, 1–20. [Google Scholar]
  74. Aksoy, Ü.E.; Erhan, İ.M. Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 2017, 2017, 5475–5488. [Google Scholar] [CrossRef]
  75. Bhakta, T.C.; Mitra, S. Some existance for functional equations arising in dynamic programming. J. Math. Anal. Appl. 1984, 98, 348–362. [Google Scholar] [CrossRef] [Green Version]
  76. Mutlu, A.; Ozakan, K.; Gurdal, U. A new fixed point theorem in modular metric spaces. Int. J. Anal. Appl. 2018, 4, 472–483. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Das, D.; Mishra, L.N.; Mishra, V.N.; Rosales, H.G.; Dhaka, A.; Monteagudo, F.E.L.; Fernández, E.G.; Ramirez-delReal, T.A. C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry 2021, 13, 2003. https://doi.org/10.3390/sym13112003

AMA Style

Das D, Mishra LN, Mishra VN, Rosales HG, Dhaka A, Monteagudo FEL, Fernández EG, Ramirez-delReal TA. C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry. 2021; 13(11):2003. https://doi.org/10.3390/sym13112003

Chicago/Turabian Style

Das, Dipankar, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Hamurabi Gamboa Rosales, Arvind Dhaka, Francisco Eneldo López Monteagudo, Edgar González Fernández, and Tania A. Ramirez-delReal. 2021. "C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory" Symmetry 13, no. 11: 2003. https://doi.org/10.3390/sym13112003

APA Style

Das, D., Mishra, L. N., Mishra, V. N., Rosales, H. G., Dhaka, A., Monteagudo, F. E. L., Fernández, E. G., & Ramirez-delReal, T. A. (2021). C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry, 13(11), 2003. https://doi.org/10.3390/sym13112003

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop