C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if ,
- (ii)
- , for all with ,
- (iii)
- , ,
- (iv)
- for all with ,
- (v)
- .
- (a)
- The essential property on a set Z of a -, is that for any the function is nonincreasing on Moreover, if then
- (b)
- It can be easily checked as that, if the set
- (c)
- If is a - then can define - on Z by
- (d)
- Any -, induces a , by, for all , and , for all . Further, starting from a , on Z, we have and .
- (1)
- Any sequence in is convergent to with respect to if, for any there exists such that for all , .Moreover, it is Ω-G-Cauchy if for all , .
- (2)
- A mapping T is Ω-G-continuous with respect to in if for every sequence such that for all , , then for all , .
- (3)
- is Ω-complete if any Ω-G-Cauchy sequence with respect to is Ω-G-convergent.
- (4)
- A subset B of is Ω-G-bounded with respect to if for each and
- (1)
- is a Ω-G-convergent to a with respect to ;
- (2)
- as ;
- (3)
- as ; and
- (4)
- as .
- (1)
- is a Ω-G-Cauchy with respect to ; and
- (2)
- as
- (i)
- if then ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- .
- (i)
- ; and
- (ii)
- or
3. Main Results
4. Ulam–Hyers Stability Results in C*-avGMS
- (i)
- there exists a increasing mapping with continuity at 0 and ;
- (ii)
- for any and for each an solution of the Equation (1), which satisfies
- (a)
- (b)
- .
- (a)
- Equation (1) is generalized Ulam–Hyers stable.
- (b)
- and if are such that , then . (well-posed)
- (c)
- If such that then .
5. Applications
- (i)
- ;
- (ii)
- For all ; and , there exists such that;
- (iii)
- For all ; and , there exists such that ;
- (iv)
- For a nonempty set consists of and , such that , and .
6. Conclusions
- (i)
- It is observed that all the results in G-metric spaces, modular G-metric spaces, -, and - cannot be obtained directly in the setting of quasi metric of these spaces.
- (ii)
- The results produced in - extend and generalize certain previous findings in the literature.
- (iii)
- Applications in nonlinear integral equations and functional equations in dynamic programming of the space - and examples in - pave the way for a realistic result.
- (iv)
- The defined Ulam–Hyers stability for - is used to check the stability problem of fixed point equations, and can also be used to check stability for fixed point equations in G-metric spaces, modular G-metric spaces, and -, respectively.
- (v)
- The results in - can be used to study a wide range of nonlinear problems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Modular G-Metric Spaces | |
- | -algebra valued Metric Spaces |
-- | -algebra valued b-Metric Spaces |
- | -algebra valued S-Metric Spaces |
- | -algebra valued G-Metric Spaces |
- | -algebra valued modular Metric Spaces |
- | -algebra valued modular G-Metric Spaces |
References
- Douglas, R. Banach Algebra Techniques in Operator Theory; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Moeini, B.; Ansaari, A.H.; Park, C. JHR-operator pairs in C*-algebra-valued modular metric spaces and related fixed point results via C*-class functions. J. Fixed Point Theory Appl. 2018, 20, 1–23. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, L.; Sun, H. C*-Algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Jiang, L.; Sun, H. C*-Algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alsulami, H.H.; Agarwal, R.P.; Karapınar, E.; Khojasteh, F. A short note on C*-valued contraction mappings. J. Inequal. Appl. 2016, 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- Kadelburg, Z.; Radenovic, S. Fixed point results in C*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 2016, 53. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, R.; Omran, S.; Nguyen, Q.N. Fixed Point Theory Using ψ-Contractive Mapping in C*-Algebra Valued B-Metric Space. Mathematics 2021, 9, 92. [Google Scholar] [CrossRef]
- Kumar, D.; Richi, D.; Park, C.; Lee, J.R. On fixed point in C*-algebra valued metric spaces using C*-class function. Int. J. Nonlinear Anal. Appl. 2021, 12, 1157–1161. [Google Scholar]
- Shen, C.; Jiang, L.; Ma, Z. C*-Algebra-valued G-metric spaces and related fixed point theorems. J. Funct. Spaces 2018, 2018, 3257189. [Google Scholar] [CrossRef] [Green Version]
- Moeini, B.; Isik, H.; Ayadi, H. Related Fixed Point Results via C*-Class Functions on C*-Algebra Valued Gb-Metric Spaces. Carpathian Math. Publ. 2020, 12, 94–106. [Google Scholar] [CrossRef]
- Ege, M.E.; Alaca, C. C*-Algebra Valued S-Metric Spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 165–177. [Google Scholar]
- Chankad, S.; Kumar, D.; Park, C. C*-algebra valued partial metric space and fixed point theorems. Proc. Math. Sci. 2019, 129, 37. [Google Scholar]
- Asim, M.; Imad, M. C*-Algebra Valued in Symmetric Spares and Fixed Point Results with an Application. UPB Sci. Bull. Ser. A 2020, 82, 207–218. [Google Scholar]
- Asim, M.; Imad, M. C*-Algebra Valued Extended b-Metric Spares and Fixed Point Results with an Application. Korean J. Math. 2020, 28, 17–30. [Google Scholar]
- Das, D.; Goswami, N.; Mishra, V.N. Some Results on Fixed Point Theorems in Banach Algebras. Int. J. Anal. Appl. 2017, 13, 32–40. [Google Scholar]
- Das, D.; Goswami, N.; Mishra, V.N. Some Results on the Projective Cone Normed Tensor Product Spaces Over Banach Algebras. Bol. Soc. Parana. Mat. 2020, 38, 197–221. [Google Scholar] [CrossRef]
- Das, D.; Mishra, V.N.; Mishra, L.N. C*-Algebra Valued Modular S-Metric Spaces with Applications in Fixed Point Theory. Tbil. Math. J. 2021, 14, 111–126. [Google Scholar]
- Dung, N.V.; Le Hung, V.T.; Dolicanin-Djekic, D. An equivalence of results in C*-algebra valued b-metric and b-metric spaces. Appl. Gen. Topol. 2017, 18, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, M.; Abbaszadeh, S. Approximate generalized derivations close to derivations in Lie C*-algebras. J. Appl. Anal. 2015, 21, 37–43. [Google Scholar] [CrossRef]
- Gordji, M.E.; Khodaei, H. A fixed point technique for investigating the stability of (α,β,γ)-derivations on Lie C*-algebras. Nonlinear Anal. 2013, 76, 52–57. [Google Scholar] [CrossRef]
- Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on ′(c)s. In Engineering Mathematics II; Silvestrov, S., Rancic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 337–353. [Google Scholar]
- Kalpana, G.; Tasneem, Z.S. C*-Algebra Valued Rectangular b-Metric Spaces and Some Fixed Point Theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 2198–2208. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Asim, M.; Imdad, M. C*-Algebra Valued Partial b-Metric Spaces and Fixed Point Results with an Application. Mathematics 2020, 8, 1381. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Ohmura, K.; Watanabe, N. Rényi Entropy on C*-Algebras. J. Stoch. Anal. 2020, 1, 1–13. [Google Scholar]
- Sarma, A.; Goswami, N.; Mishra, V.N. Some results for a class of Extended centralizers on C*-algebras. Dis. Math. Algorithms Appl. 2020, 12, 2050087. [Google Scholar] [CrossRef]
- Størmer, E. Entropy in C*-algebra. In Classification Nueclear C*-Algebras, Entropy in Operator Algebras; Rørdem, M., Størmer, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 160–163. [Google Scholar]
- Ozer, O.; Omran, S. On the generalized C*-valued metric spaces related with Banach fixed point theory. Int. J. Adv. Appl. Sci. 2017, 4, 35–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Bhatti, M.M.; Marin, M.; Mekheimer, K.S. Entropy Analysis on the Blood Flow Through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles. Entropy 2020, 22, 1070. [Google Scholar] [CrossRef]
- Chistyakov, V.V. Modular metric spaces generated by F modulars. Folia Math. 2008, 14, 3–25. [Google Scholar]
- Chistyakov, V.V. Modular metric spaces I basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, R. Asymptotic pointwise contractions in modular metric spaces. Nonlinear Funct. Anal. Appl. 2013, 18, 33–38. [Google Scholar]
- Okeke, G.A.; Francis, D.; de la Sen, M. Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications. Heliyon 2020, 6, e04785. [Google Scholar] [CrossRef]
- Shateri, T.L. C*-algebra-valued modular spaces and fixed point theorems. J. Fixed Point Theory Appl. 2017, 19, 1551–1560. [Google Scholar] [CrossRef]
- Ege, M.E.; Alaca, C. Some results for Modular b-metric spaces and an aplication to system of linear equations. Azerbaijan J. Math. 2018, 8, 3–14. [Google Scholar]
- Moeini, B.; Ansaari, A.H.; Park, C. C*-Algebra-Valued Modular Metric Spaces and Related Fixed Point Results. 2017, Volume 2017, pp. 1–10. Available online: https://www.researchgate.net/publication/322554371 (accessed on 16 August 2021).
- Moeini, B.; Ansaari, A.H. Common fixed points for C*-algebra-valued modular metric spaces via C*-class functions with application. arXiv 2017, arXiv:1708.01254. [Google Scholar]
- Das, D.; Mishra, L.N. Some Fixed Point Results for JHR Operator Pairs in C*-Algebra Valued Modular b-Metric Spaces via C*-Class Functions with applications. Adv. Stud. Contemp. Math. 2019, 29, 283–400. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Ulam, S.M. Problems in Modern Mathematics; John Wiley & Sons: New York, NY, USA, 1964. [Google Scholar]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed point approach. Aequationes Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Bota-Boriceanu, M.F.; Petruşel, A. Ulam-Hyers stability for operatorial equations. Analele Stiintifice Ale Univ. 2011, 2011 57, 65–74. [Google Scholar] [CrossRef]
- Bota, M.F.; KarapJnar, E.; Mleşiniţe, O. Ulam-Hyers Stability Results for Fixed Point Problems via α-μ-Contractive Mapping in (b)-Metric Space. Abstr. Appl. Anal. 2013, 2013, 825293. [Google Scholar] [CrossRef] [Green Version]
- Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
- Haokip, N.; Goswami, N. Stability of Additive Quadratic Functional Equation. J. Nonlinear Sci. Appl. 2020, 9, 8443–8454. [Google Scholar] [CrossRef]
- Kim, S.S.; Cho, Y.J.; Gordgi, M.E. On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations. J. Inequalities Appl. 2012, 2012, 186. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H. On the Hyers-Ulam-Rassias Stability of a General Quintic Functional Equation and a General Sextic Functional Equation. Mathematics 2019, 7, 510. [Google Scholar] [CrossRef] [Green Version]
- Petru, T.P.; Petruşel, A.; Yao, J.C. Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 2011, 15, 2195–2212. [Google Scholar] [CrossRef]
- Phiangsungnoen, S.; Wutiphol Sintunavarat, W.; Kumam, P. Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 188. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. The theory of a metrical fixed point theorem: Theoretical and applicative relevances. Fixed Point Theory Appl. 2008, 9, 541–559. [Google Scholar]
- Tunç, C.; Biçer, E. Hyers-Ulam-Rassias Stability for a First Order Functional Differential Equation. J. Math. Fund. Sci. 2015, 47, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Mustaafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Agarwal, R.P.; Kadelburg, Z.; Radenović, S. On coupled fixed point results in asymmetric G-metric spaces. J. Inequal. Appl. 2013, 2013, 528. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.H.; Barakat, M.A.; Aydi, H. New Approach for Common Fixed Point Theorems via C-Class Functions in Gp-Metric Spaces. J. Funct. Spaces 2017, 2017, 2624569. [Google Scholar]
- Manro, S.; Kumar, S.; Bhatia, S.S. Weakly Compatiable Maps of Type(A) in G-Metric Space. Demonstr. Math. 2020, XLV, 901–908. [Google Scholar]
- Manro, S.; Bhatia, S.S.; Kumar, S.; Vetro, C. A common fixed point theorem for two weakly compatible pairs in G-metric spaces using the property E.A. Fixed Point Theory Appl. 2013, 2013, 41. [Google Scholar] [CrossRef] [Green Version]
- Rashwan, R.A.; Saleh, S.M. Solution of Nonlinear Integral Equations Via Fixed Point Theorems in G-metric Spaces. Int. J. Appl. Math. Res. 2014, 3, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Salimia, P.; Hussainb, N.; Roldanc, A.; Karapınard, E. On Modified α-ϕ asymmetric Meir-Keeler Contractive Mappings. Filomat 2014, 28, 1855–1869. [Google Scholar] [CrossRef]
- Shatanwari, W. Some fixed Point Theorems in Ordered G-Metric spaces with applications. Abstr. Appl. Anal. 2011, 2011, 126205. [Google Scholar]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef] [Green Version]
- Samet, B.; Vetro, C.; Vetro, F. Remarks on G-metric Spaces. Int. J. Anal. 2013, 2013, 917158. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M.; Karapinar, E.; Salimi, P. A new approach to G-metric and related fixed point theorems. J. Inequalities Appl. 2013, 2013, 454. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M.; Salimi, P. Some fixed point and common fixed point theorems on G-metric spaces. Nonlinear Funct. Anal. Appl. 2016, 21, 523–530. [Google Scholar]
- Agarwal, R.P.; Karapınar, E.; O’Regan, D.; Roldan-Lopez-de-Hierro, A.F. (Eds.) New Approaches to Fixed Point Results on G-Metric Spaces. In Fixed Point Theory in Metric Type Spaces; Springer: Cham, Switzerland, 2015; pp. 199–218. [Google Scholar]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
- Dung, N.V.; Hieu, N.T.; Radojevic, S. Fixed point theorems for g-monotone maps on partially ordered S-metric spaces. Filomat 2014, 28, 1885–1898. [Google Scholar]
- Azadifar, B.; Maramaei, M.; Sadeghi, G. On the modular G-metric spaces and fixed point theorems. J. Nonlinear Sci. Appl. 2013, 6, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Azadifar, B.; Maramaei, M.; Sadeghi, G. Common fixed point theorems in modular G-metric spaces. Nonlinear Anal. Appl. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Okeke, G.A.; Francis, D. Fixed point theorems for Geraghtytype mappings applied to solving nonlinear Volterra-Fredholm integral equations in modular G-metric spaces. Arab. J. Math. Sci. 2020, 27, 214–234. [Google Scholar]
- Okeke, G.A.; Francis, D. Fixed point theorems for asymptotically T-regular mappings in preordered modular G-metric spaces applied to solving nonlinear integral equations. arXiv 2021, arXiv:2104.11995v1. [Google Scholar]
- Patir, B.; Goswami, N.; Mishra, V.N. Some Results on Fixed Point for a Class of Generalized Nonexpansive Mappings. Fixed Point Theory Appl. 2018, 19, 19. [Google Scholar] [CrossRef]
- Pathak, H.K.; Khan, M.S.; Tiwari, R. A Common Fixed Point Theorem and its application to nonlinear integral equations. Comp. Math. Appl. 2007, 53, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Othman, M.I.A.; Seadway, A.R.; Carstea, C. A Domain of Influence in the Moore-Gibson-Thompson Theory of Dipolar Bodies. J. Taibah Univ. Sci. 2020, 14, 653–660. [Google Scholar] [CrossRef]
- Sarma, A.; Goswami, N.; Das, D. Common Fixed Point Result in C*-algebra Valued Modular Metric Spaces with an Application. AAMS 2019, 19, 1–20. [Google Scholar]
- Aksoy, Ü.E.; Erhan, İ.M. Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 2017, 2017, 5475–5488. [Google Scholar] [CrossRef]
- Bhakta, T.C.; Mitra, S. Some existance for functional equations arising in dynamic programming. J. Math. Anal. Appl. 1984, 98, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, A.; Ozakan, K.; Gurdal, U. A new fixed point theorem in modular metric spaces. Int. J. Anal. Appl. 2018, 4, 472–483. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, D.; Mishra, L.N.; Mishra, V.N.; Rosales, H.G.; Dhaka, A.; Monteagudo, F.E.L.; Fernández, E.G.; Ramirez-delReal, T.A. C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry 2021, 13, 2003. https://doi.org/10.3390/sym13112003
Das D, Mishra LN, Mishra VN, Rosales HG, Dhaka A, Monteagudo FEL, Fernández EG, Ramirez-delReal TA. C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry. 2021; 13(11):2003. https://doi.org/10.3390/sym13112003
Chicago/Turabian StyleDas, Dipankar, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Hamurabi Gamboa Rosales, Arvind Dhaka, Francisco Eneldo López Monteagudo, Edgar González Fernández, and Tania A. Ramirez-delReal. 2021. "C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory" Symmetry 13, no. 11: 2003. https://doi.org/10.3390/sym13112003
APA StyleDas, D., Mishra, L. N., Mishra, V. N., Rosales, H. G., Dhaka, A., Monteagudo, F. E. L., Fernández, E. G., & Ramirez-delReal, T. A. (2021). C*-Algebra Valued Modular G-Metric Spaces with Applications in Fixed Point Theory. Symmetry, 13(11), 2003. https://doi.org/10.3390/sym13112003