Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Behavioral Testing
2.3.1. Elevated Plus Maze
2.3.2. Forced Swimming Test (Porsolt Test)
2.3.3. Tail Suspension Test
2.3.4. Hot Plate Test
2.3.5. Dynamic Plantar (von Frey) Test
2.3.6. Nest Building Test
2.4. Statistics
2.5. Resting State Functional MRI (rs-fMRI)
2.5.1. Data Processing for Resting State fMRI
2.5.2. Group Level Analysis for rs-fMRI
2.6. Histology
3. Results
3.1. Resting State fMRI
3.2. Body Weight and ECG and Blood Pressure
3.3. Behavioral Testing
3.3.1. Elevated Plus Maze
3.3.2. Forced Swim Test and Tail Suspension Test
3.3.3. Dynamic Plantar Test
3.3.4. Hot Plate Test
3.3.5. Nest Building Test
3.4. Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; E Smalley, R. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Bakry, R.; Vallant, R.M.; Najam-Ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal Applications of Fullerenes. Int. J. Nanomed. 2007, 2, 639–649. [Google Scholar]
- Andrievsky, G.V.; Bruskov, V.I.; Tykhomyrov, A.A.; Gudkov, S.V. Peculiarities of the Antioxidant and Radioprotective Effects of Hydrated C60 Fullerene Nanostuctures In Vitro and In Vivo. Free. Radic. Biol. Med. 2009, 47, 786–793. [Google Scholar] [CrossRef]
- Dellinger, A.L.; Cunin, P.; Lee, D.; Kung, A.; Brooks, D.B.; Zhou, Z.; Nigrovic, P.A.; Kepley, C.L. Inhibition of Inflammatory Arthritis Using Fullerene Nanomaterials. PLoS ONE 2015, 10, e0126290. [Google Scholar] [CrossRef] [Green Version]
- Prylutska, S.V.; Burlaka, A.P.; Klymenko, P.P.; Grynyuk, I.I.; Prylutskyy, Y.I.; Schütze, C.; Ritter, U. Using Water-Soluble C60 Fullerenes in Anticancer Therapy. Cancer Nanotechnol. 2011, 2, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Ngan, C.L.; Basri, M.; Tripathy, M.; Karjiban, R.A.; Abdul-Malek, E. Skin Intervention of Fullerene-Integrated Nanoemulsion in Structural and Collagen Regeneration Against Skin Aging. Eur. J. Pharm. Sci. 2015, 70, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Itoga, K.; Yamato, M.; Akamatsu, H.; Okano, T. The Co-Application Effects of Fullerene and Ascorbic Acid on UV-B Irradiated Mouse Skin. Toxicology 2010, 267, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Chiang, L.Y.; Wang, L.-Y.; Swirczewski, J.W.; Soled, S.; Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 1994, 59, 3960–3968. [Google Scholar] [CrossRef]
- Andrievsky, G.V.; Kosevich, M.V.; Vovk, O.M.; Shelkovsky, V.S.; Vashchenko, L.A. On the Production of an Aqueous Colloidal Solution of Fullerenes. J. Chem. Soc. Chem. Commun. 1995, 1281–1282. [Google Scholar] [CrossRef]
- Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile Synthesis of Highly Water-Soluble Fullerenes More than Half-Covered by Hydroxyl Groups. ACS Nano 2008, 2, 327–333. [Google Scholar] [CrossRef]
- LeGates, T.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. Aberrant Light Directly Impairs Mood and Learning Through Melanopsin-Expressing Neurons. Nature 2012, 491, 594–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Jang, S.; Choe, H.K.; Chung, S.; Son, G.H.; Kim, A.K. Implications of Circadian Rhythm in Dopamine and Mood Regulation. Mol. Cells 2017, 40, 450–456. [Google Scholar] [CrossRef]
- Provencio, I.; Rodriguez, I.R.; Jiang, G.; Hayes, W.P.; Moreira, E.F.; Rollag, M.D. A Novel Human Opsin in the Inner Retina. J. Neurosci. 2000, 20, 600–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattar, S.; Liao, H.-W.; Takao, M.; Berson, D.M.; Yau, K.-W. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Hattar, S.; Kumar, M.; Park, A.; Tong, P.; Tung, J.; Yau, K.-W.; Berson, D.M. Central Projections of Melanopsin-Expressing Retinal Ganglion Cells in the Mouse. J. Comp. Neurol. 2006, 497, 326–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delwig, A.; Larsen, D.D.; Yasumura, D.; Yang, C.; Shah, N.M.; Copenhagen, D.R. Retinofugal Projections from Melanopsin-Expressing Retinal Ganglion Cells Revealed by Intraocular Injections of Cre-Dependent Virus. PLoS ONE 2016, 11, e0149501. [Google Scholar] [CrossRef]
- Güler, A.D.; Ecker, J.L.; Lall, G.; Haq, S.; Altimus, C.M.; Liao, H.-W.; Barnard, A.R.; Cahill, H.; Badea, T.C.; Zhao, H.; et al. Melanopsin Cells are the Principal Conduits for Rod–Cone Input to Non-Image-Forming Vision. Nature 2008, 453, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Sato, T.K.; Castrucci, A.M.; Rollag, M.D.; DeGrip, W.J.; Hogenesch, J.B.; Provencio, I.; Kay, S.A. Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting. Science 2002, 298, 2213–2216. [Google Scholar] [CrossRef] [Green Version]
- Freedman, M.S.; Lucas, R.J.; Soni, B.; von Schantz, M.; Muñoz, M.; David-Gray, Z.; Foster, R. Regulation of Mammalian Circadian Behavior by Non-rod, Non-cone, Ocular Photoreceptors. Science 1999, 284, 502–504. [Google Scholar] [CrossRef]
- Peirson, S.N.; Halford, S.; Foster, R.G. The Evolution of Irradiance Detection: Melanopsin and the Non-Visual Opsins. Philos. Trans. R. Soc. B. Biol. Sci. 2009, 364, 2849–2865. [Google Scholar] [CrossRef] [Green Version]
- Dacey, D.M.; Liao, H.-W.; Peterson, B.B.; Robinson, F.; Smith, V.C.; Pokorny, J.; Yau, K.-W.; Gamlin, P. Melanopsin-Expressing Ganglion Cells in Primate Retina Signal Colour and Irradiance and Project to the LGN. Nature 2005, 433, 749–754. [Google Scholar] [CrossRef]
- Walmsley, L.; Hanna, L.; Mouland, J.W.; Martial, F.; West, A.; Smedley, A.; Bechtold, D.; Webb, A.R.; Lucas, R.J.; Brown, T.M. Colour as a Signal for Entraining the Mammalian Circadian Clock. PLoS Biol. 2015, 13, e1002127. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.F.; Rahman, S. Spectral Modulation of Light Wavelengths Using Optical Filters: Effect on Melatonin Secretion. Fertil. Steril. 2014, 102, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tamura, H.; Tan, D.X.; Xu, X.-Y. Melatonin and The Circadian System: Contributions to Successful Female Reproduction. Fertil. Steril. 2014, 102, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Danilenko, K.V.; Sergeeva, O.Y. Immediate Effect of Blue-Enhanced Light on Reproductive Hormones in Women. Neuro Endocrinol. Lett. 2015, 36, 84–90. [Google Scholar]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and Circadian Rhythm Disruption in Psychiatric and Neurodegenerative Disease. Nat. Rev. Neurosci. 2010, 11, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Imeraj, L.; Sonuga-Barke, E.; Antrop, I.; Roeyers, H.; Wiersema, R.; Bal, S.; Deboutte, D. Altered Circadian Profiles in Attention-Deficit/Hyperactivity Disorder: An Integrative Review and Theoretical Framework for Future Studies. Neurosci. Biobehav. Rev. 2012, 36, 1897–1919. [Google Scholar] [CrossRef] [Green Version]
- Alloy, L.B.; Ng, T.H.; Titone, M.; Boland, E.M. Circadian Rhythm Dysregulation in Bipolar Spectrum Disorders. Curr. Psychiatry Rep. 2017, 19, 21. [Google Scholar] [CrossRef]
- Wulff, K.; Dijk, D.-J.; Middleton, B.; Foster, R.G.; Joyce, E.M. Sleep and Circadian Rhythm Disruption in Schizophrenia. Br. J. Psychiatry 2012, 200, 308–316. [Google Scholar] [CrossRef]
- Parekh, P.K.; Ozburn, A.R.; McClung, C.A. Circadian Clock Genes: Effects on Dopamine, Reward and Addiction. Alcohol 2015, 49, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Kang, C.; Hou, X.; Zhang, Q.; Meng, Q.; Jiang, J.; Hao, W. Blue Light Deprivation Produces Depression-Like Responses in Mongolian Gerbils. Front. Psychiatry 2020, 11, 233. [Google Scholar] [CrossRef]
- Lucas, R.J.; Douglas, R.H.; Foster, R.G. Characterization of an Ocular Photopigment Capable of Driving Pupillary Constriction in Mice. Nat. Neurosci. 2001, 4, 621–626. [Google Scholar] [CrossRef]
- Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Aggarwal, S.; Sharma, G. Effect of Low Fluence Radiation on Nanocomposite Thin Films of Cu Nanoparticles Embedded in Fullerene C 60. Vacuum 2017, 142, 5–12. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef] [Green Version]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Kropka, J.M.; Putz, K.W.; Pryamitsyn, V.; Ganesan, V.; Green, P.F. Origin of Dynamical Properties in PMMA−C60 Nanocomposites. Macromolecules 2007, 40, 5424–5432. [Google Scholar] [CrossRef]
- Kawauchi, T.; Kumaki, J.; Kitaura, A.; Okoshi, K.; Kusanagi, H.; Kobayashi, K.; Sugai, T.; Shinohara, H.; Yashima, E. Encapsulation of Fullerenes in a Helical PMMA Cavity Leading to a Robust Processable Complex with a Macromolecular Helicity Memory. Angew. Chem. Int. Ed. 2008, 47, 515–519. [Google Scholar] [CrossRef]
- Koruga, D. Optical Filter and Method of Manufacturing an Optical Filter. European Patent EP 3 469 406 B1; Bulletin 2020/33, 12 August 2020. US Patent 11,067,730 B2, 20 July 2021. [Google Scholar]
- Stankovic, I.; Matija, L.; Jankov, M.; Jeftic, B.; Koruga, I.; Koruga, D. Optical and Structural Properties Of PMMA/C60 Composites with Different Concentrations of C60 Molecules and its Possible Applications. J. Polym. Res. 2020, 27, 224. [Google Scholar] [CrossRef]
- Koruga, D. Composition of Matter Containing Harmonized Hydroxyl Modified Fullerene Substance. US Patent 8,058,483 B2, 15 November 2011. [Google Scholar]
- Koruga, D. Compositions Comprising Hyper Harmonized Hydroxyl Modified Fullerene Substances. International Patent Application No. WO 2021/110234 A1, 10 June 2021. [Google Scholar]
- Castagné, V.; Moser, P.; Roux, S.; Porsolt, R.D. Rodent Models of Depression: Forced Swim and Tail Suspension Behavioral Despair Tests in Rats and Mice. Curr. Protoc. 2011, 55, 8.10A.1–8.10A.14. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Helyes, Z.; Sándor, K.; Bite, A.; Pintér, E.; Németh, J.; Bánvölgyi, A.; Bölcskei, K.; Elekes, K.; Szolcsányi, J. Role of Transient Receptor Potential Vanilloid 1 Receptors in Adjuvant-Induced Chronic Arthritis: In Vivo Study Using Gene-Deficient Mice. J. Pharmacol. Exp. Ther. 2005, 314, 111–119. [Google Scholar] [CrossRef] [Green Version]
- El Maarouf, A.; Kolesnikov, Y.; Pasternak, G.; Rutishauser, U. Polysialic Acid-Induced Plasticity Reduces Neuropathic Insult to the Central Nervous System. Proc. Natl. Acad. Sci. USA 2005, 102, 11516–11520. [Google Scholar] [CrossRef] [Green Version]
- Deacon, R.M.J. Assessing nest building in mice. Nat. Protoc. 2006, 1, 1117–1119. [Google Scholar] [CrossRef] [PubMed]
- Yan, C. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front. Syst. Neurosci. 2010, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Margulies, D.S.; Kelly, C.; Uddin, L.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Mapping the Functional Connectivity of Anterior Cingulate Cortex. NeuroImage 2007, 37, 579–588. [Google Scholar] [CrossRef]
- Friston, K.J.; Williams, S.; Howard, R.; Frackowiak, R.S.J.; Turner, R. Movement-Related Effects in fMRI Time-Series. Magn. Reson. Med. 1996, 35, 346–355. [Google Scholar] [CrossRef]
- Yu-Feng, Z.; Yong, H.; Chao-Zhe, Z.; Qing-Jiu, C.; Man-Qiu, S.; Meng, L.; Li-Xia, T.; Tian-Zi, J. Altered Baseline Brain Activity in Children with ADHD Revealed by Resting-State Functional MRI. Brain Dev. 2007, 29, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Birn, R.M.; Handwerker, D.; Jones, T.B.; Bandettini, P.A. The Impact of Global Signal Regression on Resting State Correlations: Are Anti-Correlated Networks Introduced? NeuroImage 2009, 44, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.; Fox, M.D. Towards a Consensus Regarding Global Signal Regression for Resting State Functional Connectivity MRI. NeuroImage 2017, 154, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Saad, Z.S.; Gotts, S.J.; Murphy, K.; Chen, G.; Jo, H.J.; Martin, A.; Cox, R. Trouble at Rest: How Correlation Patterns and Group Differences Become Distorted After Global Signal Regression. Brain Connect. 2012, 2, 25–32. [Google Scholar] [CrossRef]
- Crabtree, J.W. Functional Diversity of Thalamic Reticular Subnetworks. Front. Syst. Neurosci. 2018, 12, 41. [Google Scholar] [CrossRef]
- Giménez-Llort, L.; Torres-Lista, V. Social Nesting, Animal Welfare, and Disease Monitoring. Animals 2021, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J.E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Hasler, G.; Fromm, S.; Alvarez, R.P.; Luckenbaugh, D.A.; Drevets, W.C.; Grillon, C. Cerebral Blood Flow in Immediate and Sustained Anxiety. J. Neurosci. 2007, 27, 6313–6319. [Google Scholar] [CrossRef] [Green Version]
- Stein, M.B.; Simmons, A.N.; Feinstein, J.S.; Paulus, M.P. Increased Amygdala and Insula Activation During Emotion Processing in Anxiety-Prone Subjects. Am. J. Psychiatry 2007, 164, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.L.; Whalen, P.J.; Shin, L.M.; McInerney, S.C.; Macklin, M.L.; Lasko, N.B.; Orr, S.P.; Pitman, R.K. Exaggerated Amygdala Response to Masked Facial Stimuli in Posttraumatic Stress Disorder: A Functional MRI Study. Biol. Psychiatry 2000, 47, 769–776. [Google Scholar] [CrossRef]
- Birbaumer, N.; Grodd, W.; Diedrich, O.; Klose, U.; Erb, M.; Lotze, M.; Schneider, F.; Weiss, U.; Flor, H. fMRI Reveals Amygdala Activation to Human Faces in Social Phobics. NeuroReport 1998, 9, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; McCloskey, M.; Fitzgerald, D.A.; Phan, K.L. Amygdala and Orbitofrontal Reactivity to Social Threat in Individuals with Impulsive Aggression. Biol. Psychiatry 2007, 62, 168–178. [Google Scholar] [CrossRef]
- Johnson, A.C.; Myers, B.; Lazovic, J.; Towner, R.; Meerveld, B.G.-V. Brain Activation in Response to Visceral Stimulation in Rats with Amygdala Implants of Corticosterone: An fMRI Study. PLoS ONE 2010, 5, e8573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazovic, J.; Wrzos, H.F.; Yang, Q.X.; Collins, C.; Smith, M.B.; Norgren, R.; Matyas, K.; Ouyang, A. Regional Activation in the Rat Brain During Visceral Stimulation Detected by C-Fos Expression and fMRI. Neurogastroenterol. Motil. 2005, 17, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Simons, L.E.; Moulton, E.; Linnman, C.; Carpino, E.; Becerra, L.; Borsook, D. The Human Amygdala and Pain: Evidence from Neuroimaging. Hum. Brain Mapp. 2014, 35, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Keefe, F.J.; Lumley, M.; Anderson, T.; Lynch, T.; Carson, K.L. Pain and Emotion: New Research Directions. J. Clin. Psychol. 2001, 57, 587–607. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut Feelings: The Emerging Biology of Gut–Brain Communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-Y.; Stohler, C.S.; Herr, D.R. Role of the Prefrontal Cortex in Pain Processing. Mol. Neurobiol. 2019, 56, 1137–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melzack, R.; Wall, P.D. Pain Mechanisms: A New Theory. Science 1965, 150, 971–978. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazovic, J.; Zopf, L.M.; Hren, J.; Gajdoš, M.; Slavkovic, M.; Jovic, Z.; Stankovic, I.; Matovic, V.; Koruga, D. Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry 2021, 13, 2004. https://doi.org/10.3390/sym13112004
Lazovic J, Zopf LM, Hren J, Gajdoš M, Slavkovic M, Jovic Z, Stankovic I, Matovic V, Koruga D. Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry. 2021; 13(11):2004. https://doi.org/10.3390/sym13112004
Chicago/Turabian StyleLazovic, Jelena, Lydia M. Zopf, Jernej Hren, Martin Gajdoš, Marija Slavkovic, Zorana Jovic, Ivana Stankovic, Valentina Matovic, and Djuro Koruga. 2021. "Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice" Symmetry 13, no. 11: 2004. https://doi.org/10.3390/sym13112004
APA StyleLazovic, J., Zopf, L. M., Hren, J., Gajdoš, M., Slavkovic, M., Jovic, Z., Stankovic, I., Matovic, V., & Koruga, D. (2021). Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry, 13(11), 2004. https://doi.org/10.3390/sym13112004