An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three
Abstract
:1. Introduction
2. Preliminaries
2.1. k-Symplectic Manifolds
- 1.
- The two-forms are closed;
- 2.
- The system is nondegenerate, that is,
- 3.
- The system is vanishing on the tangent vectors to the foliation , that is,
2.2. k-Symplectic Affine Manifolds
2.3. Case Where Is of Codimension One
3. Main Results
3.1. Subgroups of Acting without a Fixed Point
3.1.1. Case Where
3.1.2. Case Where the Rank
3.1.3. Case Where Rank
3.1.4. Case Where the Rank of Is at Least 3
3.2. An Infinite Family of Compact Complete and Locally Affine k-Symplectic Manifolds of Dimension 3
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awane, A. Sur une Généralisation des Structures Symplectiques. Ph.D. Thesis, University of Mulhouse, Strasbourg, France, 1984. [Google Scholar]
- Awane, A. k-symplectic structures. J. Math. Phys. 1992, 33, 4046–4052. [Google Scholar] [CrossRef]
- Puta, M. Some remarks on the k-symplectic manifolds. Tensor 1988, 47, 109–115. [Google Scholar]
- Gunther, C. The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case. J. Differ. Geom. 1987, 25, 23–53. [Google Scholar] [CrossRef]
- De Leon, M.; Salgado, M.; Vilarino, S. Methods of Differential Geometry in Classical Field Theories. k-Symplectic and k-Cosymplectic Approaches; World Scientific: Singapore, 2015. [Google Scholar]
- Munteanu, F.; Salgado, M.; Rey, A.M. The Gunther’s formalism in classical field theory: Momentum map and reduction. J. Math. Phys. 2004, 45, 1730–1751. [Google Scholar] [CrossRef]
- Awane, A. Generalized Polarized Manifolds. Rev. Mat. Complut. 2007, 21, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Molino, P. Géométrie de Polarisation, Travaux en Cours Hermann; Hermann: Paris, France, 1984; pp. 37–53. [Google Scholar]
- Woodhouse, N. Geometric Quantization; Clarendon Press Oxford: Oxford, UK, 1980. [Google Scholar]
- Nambu, Y. Generalized Hamiltonian Dynamics. Phys. Rev. D 1973, 7, 2405–2412. [Google Scholar] [CrossRef]
- De Leon, M.; McLean, M.; Norris, L.K.; Rey Roca, A.; Salgado, M. Geometric structures in field theory. arXiv 2002, arXiv:math-ph/0208036. [Google Scholar]
- Merino, E. k-Symplectic and k-Cosymplectic Geometries. Applications to Classical Field Theory; Pubblicaciones del Departemento de Geometria y Topologia, Universitad de Santiago de Compostela: Santiago de Compostela, Spain, 1997; Volume 87. [Google Scholar]
- De Lucas, J.; Vilarino, S. k-Symplectic Lie Systems: Theory and applications. J. Differ. Equations 2015, 258, 2221–2255. [Google Scholar] [CrossRef] [Green Version]
- Blaga, A.M.; Montano, B.C. Some Geometric Structures Associated to a k-Symplectic Manifold. Phys. A Math. Theor. 2008, 41, 13. [Google Scholar] [CrossRef]
- Souriau, J.M. Structure des Systemes Dynamiques; Dunod: Paris, France, 1970. [Google Scholar]
- Auslander, L. Examples of locally affine spaces. Ann. Maths. 1964, 64, 255–259. [Google Scholar] [CrossRef]
- Auslander, L.; Markus, L. Holonomy of flat affinely connected manifolds. Ann. Math. Princet. 1955, 62, 139–151. [Google Scholar] [CrossRef]
- Auslander, L. The structure of complete locally affine manifolds. Topology 1964, 3, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Benzecri, J.P. Variétés Localment Plates. Ph.D. Thesis, Princeton University, Princeton, NY, USA, 1955. [Google Scholar]
- Sari, T. Sur les Variétés de Contact Localement Affines; CRAS: Paris, France, 1981; pp. 809–812. [Google Scholar]
- Sari, T. Sur les variétés de contact affines plates. In Séminaire Gaston- Darboux de Géométrie et Topologie, 1991–1992; Univ. Montpellier II: Montpellier, France, 1993. [Google Scholar]
- Goze, M.; Haraguchi, Y. Sur les r-Systèmes de Contact; CRASC: Paris, France, 1982; Volume 294, pp. 95–97. [Google Scholar]
- Wolf, J.A. Spaces of Constant Curvature; Mc Graw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publishers: New York, NY, USA, 1963; Volume 1. [Google Scholar]
- Milnor, J. On fundamental groups of complete affinely flat manifolds. Adv. Math. 1977, 25, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Fried, D.; Goldman, W. Three-dimensional affine crystallographic groups. Adv. Math. 1983, 47, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Margulis, G.A. Free properly discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 1983, 272, 937–940. [Google Scholar]
- Awane, A.; Goze, M. Pfaffian Systems. k-Symplectic Systems; Kluwer Academic Press: Drive Norwell, MA, USA, 2000. [Google Scholar]
- Godbillon, C. Eléments de Topologie algébrique. In Editeurs des Sciences et Des Arts; Hermann: Paris, France, 1971; p. 29. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mokhtar, F.; Said, E. An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three. Symmetry 2021, 13, 2159. https://doi.org/10.3390/sym13112159
El Mokhtar F, Said E. An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three. Symmetry. 2021; 13(11):2159. https://doi.org/10.3390/sym13112159
Chicago/Turabian StyleEl Mokhtar, Fanich, and Essabab Said. 2021. "An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three" Symmetry 13, no. 11: 2159. https://doi.org/10.3390/sym13112159
APA StyleEl Mokhtar, F., & Said, E. (2021). An Infinite Family of Compact, Complete, and Locally Affine k-Symplectic Manifolds of Dimension Three. Symmetry, 13(11), 2159. https://doi.org/10.3390/sym13112159