Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem
Abstract
:1. Introduction
2. Preliminaries
2.1. Basic Knowledge
- The power function of the q-analogue is defined by
- The power function of the q-symmetric analogue is defined by
- The power function of the -symmetric analogue is defined by
- ,
- .
2.2. Auxiliary Lemmas
2.3. Lemma for Linear Variant Form
3. Main Results
3.1. Existence and Uniqueness Result
- There exist positive constants , such that for each and ,
- There exist positive constants , such that for each ,
- ,
3.2. Existence of at Least One Solution
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-difference integrals. Q. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Finkelstein, R.J. Symmetry group of the hydrogen atom. J. Math. Phys. 1967, 8, 443–449. [Google Scholar] [CrossRef]
- Finkelstein, R.J. q-gauge theory. Int. J. Mod. Phys. A. 1996, 11, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G.; Lavagno, A.; Quarati, P. Kinetic model for q-deformed bosons and fermions. Phys. Lett. A 1997, 227, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Ilinski, K.N.; Kalinin, G.V.; Stepanenko, A.S. q-functional field theory for particles with exotic statistics. Phys. Lett. A 1997, 232, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, R.J. q-field theory. Lett. Math. Phys. 1995, 34, 169–176. [Google Scholar] [CrossRef]
- Chan, F.L.; Finkelstein, R.J. q-deformation of the Coulomb problem. J. Math. Phys. 1994, 35, 3273–3284. [Google Scholar] [CrossRef]
- Finkelstein, R.J. The q-Coulomb problem. J. Math. Phys. 1996, 37, 2628–2636. [Google Scholar] [CrossRef]
- Feigenbaum, J.; Freund, P.G. A q-deformation of the Coulomb problem. J. Math. Phys. 1996, 37, 1602–1616. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, R.J. q-gravity. Lett. Math. Phys. 1996, 38, 53–62. [Google Scholar] [CrossRef]
- Monteiro, M.R.; Rodrigues, L.M.C.S.; Wulck, S. Quantum algebraic nature of the photon spectrum in 4He. Phys. Rev. Lett. 1996, 76, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Siegel, W. Introduction to String Field Theory; Advanced Series in Mathematical Physics; World Scientific Publishing: Teaneck, NJ, USA, 1988; Volume 8. [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Aldwoah, K.A. Generalized Time Scales and Associated Difference Equations. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. The Hahn quantum variational calculus. J. Optim. Theory Appl. 2010, 147, 419–442. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus. Spinger Briefs in Electrical and Computer Engineering-Control, Automation and Robotics; Springer: Berlin, Germany, 2014. [Google Scholar]
- Malinowska, A.B.; Martins, N. Generalized transversality conditions for the Hahn quantum variational calculus. Optimization 2013, 62, 323–344. [Google Scholar] [CrossRef]
- Hamza, A.E.; Ahmed, S.M. Theory of linear Hahn difference equations. J. Adv. Math. 2013, 4, 441–461. [Google Scholar]
- Hamza, A.E.; Ahmed, S.M. Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 2013, 316. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.E.; Makharesh, S.D. Leibniz’ rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math. 2016, 12, 6335–6345. [Google Scholar]
- Sitthiwirattham, T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q,ω-derivatives. Adv. Differ. Equ. 2016, 2016, 116. [Google Scholar] [CrossRef] [Green Version]
- Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Ntouyas, S.K.; Sitthiwirattham, T. Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions. Adv. Differ. Equ. 2017, 2017, 170. [Google Scholar] [CrossRef] [Green Version]
- Costas-Santos, R.S.; Marcellán, F. Second structure Relation for q-semiclassical polynomials of the Hahn Tableau. J. Math. Anal. Appl. 2007, 329, 206–228. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.H.; Lee, D.W.; Park, S.B.; Yoo, B.H. Hahn class orthogonal polynomials. Kyungpook Math. J. 1998, 38, 259–281. [Google Scholar]
- Foupouagnigni, M. Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-Order Difference Equation for the Rth Associated and the Laguerre-Freud Equations Recurrence Coefficients. Ph.D. Thesis, Université Nationale du Bénin, Ketou, Benin, 1998. [Google Scholar]
- Artur, M.C.; Cruz, B.; Martins, N.; Torres, D.F.M. Hahn’s symmetric quantum variational calculus. Numer. Algebra Control Optim. 2013, 3, 77–94. [Google Scholar]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Phil. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edin. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comp. 1974, 28, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Brikshavana, T.; Sitthiwirattham, T. On Fractional Hahn Calculus. Adv. Differ. Equ. 2017, 2017, 354. [Google Scholar] [CrossRef] [Green Version]
- Soontharanon, J.; Sitthiwirattham, T. On Fractional (p,q)-Calculus. Adv. Differ. Equ. 2020, 2020, 35. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A. Advances in Fractional Calculus:Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Tariq, M.; Ahmad, H.; Sahoo, S.K. The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type. Math. Model. Num. Sim. Appl. 2021, 1, 32–43. [Google Scholar] [CrossRef]
- Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal Fract. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Jarad, F.; Abdeljawad, T.; Khan, A. A singular ABC-fractional differential equation with p-Laplacian operator. Chaos Solit. Fractals 2019, 129, 56–61. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math. Model. Num. Sim. Appl. 2021, 1, 11–23. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Sitthiwirattham, T. Existence Results for Fractional Hahn Difference and Fractional Hahn Integral Boundary Value Problems. Discrete Dyn. Nat. Soc. 2017, 2017, 7895186. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Brikshavana, T.; Sitthiwirattham, T. On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On Nonlocal Robin Boundary Value Problems for Riemann-Liouville Fractional Hahn Integrodifference Equation. Bound. Value Probl. 2018, 2018, 46. [Google Scholar] [CrossRef]
- Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions. Mathematics 2019, 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On Fractional Symmetric Hahn Calculus. Mathematics 2019, 7, 873. [Google Scholar] [CrossRef] [Green Version]
- Patanarapeelert, N.; Sitthiwirattham, T. On Nonlocal Fractional Symmetric Hanh Integral Boundary Value Problems for Fractional Symmetric Hahn Integrodifference Equation. AIMS Math. 2020, 5, 3556–3572. [Google Scholar] [CrossRef]
- Sun, M.; Jin, Y.; Hou, C. Certain fractional q-symmetric integrals and q-symmetric derivatives and their application. Adv. Differ. Equ. 2016, 2016, 222. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Hou, C. Fractional q-symmetric calculus on a time scale. Adv. Differ. Equ. 2017, 2017, 166. [Google Scholar] [CrossRef] [Green Version]
- Griffel, D.H. Applied Functional Analysis; Ellis Horwood Publishers: Chichester, UK, 1981. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cone; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouncharoen, R.; Patanarapeelert, N.; Sitthiwirattham, T. Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem. Symmetry 2021, 13, 2174. https://doi.org/10.3390/sym13112174
Ouncharoen R, Patanarapeelert N, Sitthiwirattham T. Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem. Symmetry. 2021; 13(11):2174. https://doi.org/10.3390/sym13112174
Chicago/Turabian StyleOuncharoen, Rujira, Nichaphat Patanarapeelert, and Thanin Sitthiwirattham. 2021. "Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem" Symmetry 13, no. 11: 2174. https://doi.org/10.3390/sym13112174
APA StyleOuncharoen, R., Patanarapeelert, N., & Sitthiwirattham, T. (2021). Existence Results of a Nonlocal Fractional Symmetric Hahn Integrodifference Boundary Value Problem. Symmetry, 13(11), 2174. https://doi.org/10.3390/sym13112174