Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate
Abstract
:1. Introduction
2. Energy Expression
3. Phragmén-Lindelöf Alternative Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horgan, C.O.; Knowles, J.K. Recent development concerning Saint-Venant’s principle. Adv. Appl. Mech. 1983, 23, 179–269. [Google Scholar]
- Horgan, C.O. Recent development concerning Saint-Venant’s principle: An update. Appl. Mech. Rev. 1989, 42, 295–303. [Google Scholar] [CrossRef]
- Horgan, C.O. Recent development concerning Saint-Venant’s principle: An second update. Appl. Mech. Rev. 1996, 49, 101–111. [Google Scholar] [CrossRef]
- D’Apice, C. Convexity considerations and spatial behavior for the harmonic vibrations in thermoelastic plates. J. Math. Anal. Appl. 2005, 312, 44–60. [Google Scholar] [CrossRef] [Green Version]
- D’Apice, C. On a generalized biharmonic equation in plane polars with applications to functionally graded material. Aust. J. Math. Anal. Appl. 2006, 3, 1–15. [Google Scholar]
- Chirita, S.; D’Apice, C. On spatial growth or decay of solutions to a non simple heat conduction problem in a semi-infinite strip. An. Stiintifice Univ. Alexandru Ioan Cuza Iasi Mat. 2002, 48, 75–100. [Google Scholar]
- Chirita, S.; Ciarletta, M.; Fabrizio, M. Some spatial decay estimates in time-dependent Stokes slow flows. Appl. Anal. 2001, 77, 211–231. [Google Scholar] [CrossRef]
- Fabrizio, M.; Chirita, S. Some qualitative results on the dynamic viscoelasticity of the Reissner-Mindlin plate model. Q. J. Mech. Appl. Math. 2004, 57, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Lin, C.H. Spatial Decay for Solutions to 2-D Boussinesq System with Variable Thermal Diffusivity. Acta Appl. Math. 2018, 154, 111–130. [Google Scholar] [CrossRef]
- Borrelli, A.; Patria, M.C. Energy bounds in dynamical problems for a semi-infinite magnetoelastic beam. J. Appl. Math. Phys. ZAMP 1996, 47, 880–893. [Google Scholar] [CrossRef]
- Diaz, J.I.; Quintallina, R. Spatial and continuous dependence estimates in linear viscoelasticity. J. Math. Anal. Appl. 2002, 273, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla, R. A spatial decay estimate for the hyperbolic heat equation. SIAM J. Math. Anal. 1998, 27, 78–91. [Google Scholar] [CrossRef]
- Quintanilla, R. Phragmen-Lindelof alternative in nonlinear viscoelasticity. Nonlinear Anal. 1998, 14, 7–16. [Google Scholar] [CrossRef]
- Payne, L.E.; Schaefer, P.W. Some Phragmén-Lindelöf Type Results for the Biharmonic Equation. J. Appl. Math. Phys. ZAMP 1994, 45, 414–432. [Google Scholar]
- Lin, C.H. Spatial Decay Estimates and Energy Bounds forth Stokes Flow Equation. Stab. Appl. Anal. Contin. Media 1992, 2, 249–264. [Google Scholar]
- Knowles, J.K. An Energy Estimate for the Biharmonic Equationand its Application to Saint-Venant’s Principle in Plane elasto statics. Indian J. Pure Appl. Math. 1983, 14, 791–805. [Google Scholar]
- Flavin, J.N. On Knowles’ version of Saint-Venant’s Principle in Two-dimensional Elastostatics. Arch. Ration. Mech. Anal. 1973, 53, 366–375. [Google Scholar] [CrossRef]
- Horgan, C.O. Decay Estimates for the Biharmonic Equation with Applications to Saint-Venant’s Principles in Plane Elasticity and Stokes flows. Q. Appl. Math. 1989, 47, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lin, C.H. Phragmén-Lindelöftype alternativeresults for the stokes flow equation. Math. Inequalities Appl. 2006, 9, 671–694. [Google Scholar] [CrossRef]
- Chen, W.; Palmieri, A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discret. Contin. Dyn. Syst. 2020, 40, 5513–5540. [Google Scholar] [CrossRef]
- Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 2021, 292, 176–219. [Google Scholar] [CrossRef]
- Palmieri, A.; Takamura, H. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal. 2019, 187, 467–492. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, A.; Reissig, M. Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. Math. Nachr. 2018, 291, 1859–1892. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z. Angew. Math. Phys. 2020, 71, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Y.; Shi, J. Estimates for the linear viscoelastic damped wave equation on the Heisenberg group. J. Differ. Equ. 2021, 285, 663–685. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Luo, C.; Lin, C. Phragmén-Lindelöf alternative results for the shallow water equations for transient compressible viscous flow. J. Math. Anal. Appl. 2013, 398, 409–420. [Google Scholar] [CrossRef]
- Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain. Nonlinear Anal. Real World Appl. 2018, 42, 308–333. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.; Lin, Y. Continuous dependence for the Brinkman–Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
- Santos, M.L.; Munoz Rivera, J.E. Analytic property of a coupled system of wave-plate type with thermal effect. Differ. Integral Equ. 2011, 24, 965–972. [Google Scholar]
- Love, A.E.H. Mathematical Theory of Elasticity, 4th ed.; Dover Publications: New York, NY, USA, 1942. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Shi, J.; Ouyang, B. Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry 2021, 13, 2256. https://doi.org/10.3390/sym13122256
Luo S, Shi J, Ouyang B. Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry. 2021; 13(12):2256. https://doi.org/10.3390/sym13122256
Chicago/Turabian StyleLuo, Shiguang, Jincheng Shi, and Baiping Ouyang. 2021. "Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate" Symmetry 13, no. 12: 2256. https://doi.org/10.3390/sym13122256
APA StyleLuo, S., Shi, J., & Ouyang, B. (2021). Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry, 13(12), 2256. https://doi.org/10.3390/sym13122256