Next Article in Journal
Vibro-Acoustic Energy Transmission Analysis of the Acoustic Cavity with Multiple Partial Partitions
Next Article in Special Issue
Schur-Convexity for Elementary Symmetric Composite Functions and Their Inverse Problems and Applications
Previous Article in Journal
Inflation from the Symmetry of the Generalized Cosmological Model
Previous Article in Special Issue
Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate

1
Department of Applied Mathematics, Guangdong University of Finance, Yingfu Road, Guangzhou 510521, China
2
School of Data Scinence, Guangzhou Huashang College, Huashang Road, Guangzhou 511300, China
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(12), 2256; https://doi.org/10.3390/sym13122256
Submission received: 1 November 2021 / Revised: 18 November 2021 / Accepted: 23 November 2021 / Published: 26 November 2021
(This article belongs to the Special Issue Symmetry in the Mathematical Inequalities)

Abstract

:
The spatial properties of solutions for a class of thermoelastic plate with biharmonic operator were studied. The energy method was used. We constructed an energy expression. A differential inequality which the energy expression was controlled by a second-order differential inequality is deduced. The P h r a g m e ´ n - L i n d e l o ¨ f alternative results of the solutions were obtained by solving the inequality. These results show that the Saint-Venant principle is also valid for the hyperbolic–hyperbolic coupling equations. Our results can been seen as a version of symmetry in inequality for studying the P h r a g m e ´ n - L i n d e l o ¨ f alternative results.

1. Introduction

Saint Venant principle points out that for any equilibrium force system on an elastic body, if its action point is limited to a given ball, the displacement and stress generated by the equilibrium force system at any point where the distance from the load is far greater than the radius of the ball can be ignored. This principle is widely used in engineering mechanics in practice. Many papers in the literature dealt with the study of the Saint-Venant principle. For example, Horgan and Knowles [1] and Horgan [2,3] studied the Saint-Venant principle in different equations and different situations. The traditional characteristic of the Saint-Venant theorem is to derive the energy decay estimates of the solutions. Usually, these decays are exponential with the spatial distance from the finite end to the infinity. In order to have some understandings about the study of the Saint-Venant Principle, one could refer to the papers [4,5,6,7,8,9]. In recent years, the studies of Saint-Venant principle for hyperbolic or quasihyperbolic equations are abundant. Especially for the studies of the spatial behavior of viscoelasticity equations, we could see papers [10,11,12,13]. When the spatial variable tends to infinity, the solution is decreasing. In the research of solution spacial decay estimates, people often need to add the solutions must satisfy some constraints at infinity. Many scholars have begun to study the P h r a g m e ´ n - L i n d e l o ¨ f alternative results of solutions. The advantage of this situation is that there is no need to add constraints on the solutions at infinity. The classical P h r a g m e ´ n - L i n d e l o ¨ f theorem states that the solutions of the harmonic equation must grow exponentially or decay exponentially with distance from the finite end of the cylinder to infinity. Payne and Schaefer [14] extended the study from harmonic equation to biharmonic equation. They obtained the P h r a g m e ´ n - L i n d e l o ¨ f alternative results for biharmonic equation in three different regions. Literatures [15,16,17,18] studied the spatial behaviors of biharmonic equations by various methods. In particular, we can see that Liu and Lin [19] studied the spatial properties for time-dependent stokes equation. They transformed the equation to a biharmonic equation and obtained the P h r a g m e ´ n - L i n d e l o ¨ f results by using a second-order differential inequality. The abovementioned studies from the literature all consider a single equation. Recently, there some new results about the studies of the hyperbolic equations or biharmonic Equations have been published (see [20,21,22,23,24,25]). For studies of other equations using energy method, see [26,27,28,29].
The domain we consider in this paper is defined as follows:
Ω 0 = { ( x 1 , x 2 ) | x 1 > 0 , 0 < x 2 < h } ,
with h is a given positive number. We now give the following notation:
L z = { ( x 1 , x 2 ) | x 1 = z 0 , 0 x 2 h } .
In reference [30], the authors studied the coupled system of wave-plate type with thermal effect. They obtained the results of the analytic property and the exponential stability of the C 0 -semigroup. The equations are as follows:
ρ 1 u , t t Δ u μ Δ u , t + λ Δ v s . = 0 , ρ 2 v , t t + γ Δ 2 v s . + λ Δ u + m Δ θ = 0 , τ θ , t k Δ θ m Δ v , t = 0 .
The model is used to represent the evolution process of a system which contains an elastic membrane and plate. The plate has an elastic force and a thermal effect (see [31]). Here u is the vertical deflection of the membrane and v is the vertical deflection of the plate. θ is the difference of temperature. The coefficients ρ 1 , ρ 2 , μ , λ , m, τ , γ , and k are nonnegative constants. Δ denotes the Laplace operator, and Δ 2 denotes the biharmonic operator.
In the present paper, we consider the case when τ = 0 . In this case, Equation (3) can be rewritten as:
ρ 1 u , t t Δ u μ Δ u , t + λ Δ v s . = 0 ,
ρ 2 v , t t + γ Δ 2 v + λ Δ u m 2 k Δ v , t = 0 .
We give the following initial and boundary value conditions:
v ( x 1 , 0 , t ) = u ( x 1 , 0 , t ) = u , 2 ( x 1 , 0 , t ) = 0 , x 1 > 0 , t > 0 , v ( x 1 , h , t ) = u ( x 1 , h , t ) = u , 2 ( x 1 , h , t ) = 0 , x 1 > 0 , t > 0 , v ( 0 , x 2 , t ) = g 1 ( x 2 , t ) , 0 x 2 h , t > 0 , u ( 0 , x 2 , t ) = g 2 ( x 2 , t ) , 0 x 2 h , t > 0 , u , 1 ( 0 , x 2 , t ) = g 3 ( x 2 , t ) , 0 x 2 h , t > 0 , v ( x 1 , x 2 , 0 ) = u ( x 1 , x 2 , 0 ) = u , t ( x 1 , x 2 , 0 ) , 0 x 2 h , x 1 > 0 ,
where g i ( x 2 , t ) , i = 1 , 2 , 3 are the given functions and meet the following compatibility conditions:
g 1 ( 0 , t ) = g 1 ( h , t ) = g 1 , 2 ( 0 , t ) = g 1 , 2 ( h , t ) = 0 , g 2 ( 0 , t ) = g 2 ( h , t ) = g 2 , 2 ( 0 , t ) = g 2 , 2 ( h , t ) = 0 , g 3 ( 0 , t ) = g 3 ( h , t ) = g 3 , 2 ( 0 , t ) = g 3 , 2 ( h , t ) = 0 , g 1 ( x 2 , 0 ) = g 2 ( x 2 , 0 ) = g 3 ( x 2 , 0 ) = 0 .
We try to establish the P h r a g m e ´ n - L i n d e l o ¨ f alternative results for the solutions of the biharmonic Equations (4) and (5) under conditions (6) and (7). We firstly define an energy expression of the solutions, then we derive that the energy expression satisfies a second-order differential inequality, and finally we obtain the P h r a g m e ´ n - L i n d e l o ¨ f alternative results of the solutions by solving the second-order inequality. For the inequality is symmetry, we show the application of symmetry in mathematical inequalities in practice. Since the system is a hyperbolic–hyperbolic coupling system, how to define the appropriate energy function will be the greatest innovation in this paper. How to control the energy function will be the difficulty of this paper. No similar studies have been found on the spatial properties for the solutions of the biharmonic equations with hyperbolic–hyperbolic coupling equations using the second-order differential inequality. In this paper, we use the comma to represent partial differentiation. , k denotes the differentiation with respect to the direction x k , thus u , α denotes u x α , and u , t denotes u t . The usual summation convection is employed with repeated Greek subscripts α summed from 1 to 2. Hence, u α , α = α = 1 2 u α x α . The symbol d A = d x 1 d x 2 .

2. Energy Expression Φ ( z , t )

In order to get the P h r a g m e ´ n - L i n d e l o ¨ f alternative results, we must define an energy expression for the solutions. This expression plays an important role in obtaining our results. The energy expression will be constructed by the following Lemmas.
Lemma 1.
Let u and v be classical solutions of problems (4)–(7), we define the a function φ 1 ( z , t ) as:
φ 1 ( z , t ) = μ 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + λ 0 t L z e x p ( ω η ) u v , η d x 2 d η .
φ 1 ( z , t ) can also be expressed as:
φ 1 ( z , t ) = ω ρ 1 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , η 2 d A d η + ρ 1 2 0 z L ξ e x p ( ω t ) ( z ξ ) u , t 2 d A + ω 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α u , α d A d η + 1 2 0 z L ξ e x p ( ω t ) ( z ξ ) u , α u , α d A + μ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α η u , α η d A d η + λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α v , α η d A d η 0 t 0 z L ξ e x p ( ω η ) u , η u , 1 d A d η + λ ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α v , α d A d η + λ 0 z L ξ e x p ( ω t ) ( z ξ ) u , α v , α d A + λ 0 t 0 z L ξ e x p ( ω η ) u , 1 v , η d A d η + λ ω 0 t 0 z L ξ e x p ( ω η ) u v , 1 d A d η + λ 0 z L ξ e x p ( ω t ) u v , 1 d A + k 1 ( z , t ) ,
where
k 1 ( z , t ) = z 0 t L 0 e x p ( ω η ) u , η u , 1 d x 2 d η + μ 2 0 t L 0 e x p ( ω η ) u , η 2 d x 2 d η + z μ 0 t L 0 e x p ( ω η ) u , η u , 1 η d x 2 d η + λ 0 t L 0 e x p ( ω η ) u v , η d x 2 d η .
Proof. 
Multiplying both sides of Equation (4) by e x p ( ω η ) ( z ξ ) u , η and integrating, we obtain
0 = 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , η ( ρ 1 u , η η u , α α μ u , α α η + λ v , α α ) d A d η = ω ρ 1 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , η 2 d A d η + ρ 1 2 0 z L ξ e x p ( ω t ) ( z ξ ) u , t 2 d A + ω 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α u , α d A d η + 1 2 0 z L ξ e x p ( ω t ) ( z ξ ) u , α u , α d A 0 t 0 z L ξ e x p ( ω η ) u , η u , 1 d A d η + z 0 t L 0 e x p ( ω η ) u , η u , 1 d x 2 d η + μ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α η u , α η d A d η μ 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + μ 2 0 t L 0 e x p ( ω η ) u , η 2 d x 2 d η + z μ 0 t L 0 e x p ( ω η ) u , η u , 1 η d x 2 d η + λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α v , α η d A d η + λ ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , α v , α d A d η + λ 0 z L ξ e x p ( ω t ) ( z ξ ) u , α v , α d A + λ 0 t 0 z L ξ e x p ( ω η ) u , 1 v , η d A d η λ 0 t L z e x p ( ω η ) u v , η d x 2 d η + λ 0 t L 0 e x p ( ω η ) u v , η d x 2 d η + λ ω 0 t 0 z L ξ e x p ( ω η ) u v , 1 d A d η + λ 0 z L ξ e x p ( ω t ) u v , 1 d A .
By combining Equations (8) and (11), we can get (9). The proof of Lemma 1 is finished. □
Lemma 2.
We suggest u and v are the classical solutions of problems (4)–(7), and we define a function φ 2 ( z , t ) as:
φ 2 ( z , t ) = 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) ( u , α α ) 2 d A d η + μ ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) ( u , α α ) 2 d A d η + μ 0 z L ξ e x p ( ω η ) ( z ξ ) ( u , α α ) 2 d A ρ 1 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β η u , β η d A d η + ρ 1 2 0 t 0 z L ξ e x p ( ω η ) u , η 2 d A d η ω ρ 1 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β β u , η d A d η ρ 1 0 z L ξ e x p ( ω t ) ( z ξ ) u , β β u , t d A λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β β v , α α d A d η + k 2 ( z , t ) ,
φ 2 ( z , t ) can also be expressed as:
φ 2 ( z , t ) = ρ 1 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η ,
where
k 2 ( z , t ) = ρ 1 z 2 0 t L 0 e x p ( ω η ) u , η 2 d x 2 d η ρ 1 z 0 t L 0 e x p ( ω η ) u , η u , 1 η d x 2 d η .
Proof. 
Multiplying both sides of Equation (4) by e x p ( ω η ) ( z ξ ) u , β β and integrating, we can obtain
0 = 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β β ( ρ 1 u , η η u , α α μ u , α α η + λ v , α α ) d A d η = ρ 1 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β η u , β η d A d η ρ 1 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , η u , 1 η d A d η + ρ 1 z 0 t L 0 e x p ( ω η ) u , η u , 1 η d x 2 d η + ω ρ 1 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β β u , η d A d η + ρ 1 0 z L ξ e x p ( ω t ) ( z ξ ) u , β β u , t d A 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) ( u , α α ) 2 d A d η μ ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) ( u , α α ) 2 d A d η μ 0 z L ξ e x p ( ω t ) ( z ξ ) ( u , α α ) 2 d A + λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) u , β β v , α α d A d η .
By combining Equations (12) and (14), we can get (13).
The proof of Lemma 2 is finished. □
Lemma 3.
We suggest u and v are classical solutions of problems (4)–(7), and we define a function φ 3 ( z , t ) as:
φ 3 ( z , t ) = ω ρ 2 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η 2 d A d η + ρ 2 2 0 z L ξ e x p ( ω t ) ( z ξ ) v , t 2 d x 2 d η + m 2 k 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α η v , α η d A d η + γ ω 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α β v , α β d A d η + γ 2 0 z L ξ e x p ( ω t ) v , α β v , α β d A λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α η u , α d A d η + λ 0 t 0 z L ξ e x p ( ω η ) v , η u , 1 d A d η 2 γ 0 t 0 z L ξ e x p ( ω η ) v , α η v , α 1 d A d η + 2 γ κ ρ 2 ω m 2 0 t 0 z L ξ e x p ( ω η ) v , η v , 1 d A d η + 2 γ κ ρ 2 m 2 0 z L ξ e x p ( ω η ) v , t v , 1 d A 2 κ λ γ m 2 0 t 0 z L ξ e x p ( ω η ) u , α v , 1 α d A d η + k 3 ( z , t ) .
φ 3 ( z , t ) can also be expressed as:
φ 3 ( z , t ) = m 2 2 k 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + 2 γ 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η 2 k λ γ m 2 0 t L z e x p ( ω η ) u , 1 v , 11 d x 2 d η k γ 2 m 2 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 v , 1 β β d x 2 d η ,
with
k 3 ( z , t ) = ( m 2 2 k + k ρ 2 γ m 2 ) 0 t L 0 e x p ( ω η ) v , η 2 d x 2 d η + m 2 k z 0 t L 0 e x p ( ω η ) v , η v , 1 η d x 2 d η + γ z 0 t L 0 e x p ( ω η ) v , α η v , α 1 d x 2 d η γ z 0 t L 0 e x p ( ω η ) v , η v , 1 β β d x 2 d η + 2 γ 0 t L 0 e x p ( ω η ) v , 1 η v , 1 d x 2 d η 2 k λ γ m 2 0 t L 0 e x p ( ω η ) u , 1 v , 11 d x 2 d η k γ 2 m 2 0 t L 0 e x p ( ω η ) v , α β v , α β d x 2 d η + 2 k γ 2 m 2 0 t L 0 e x p ( ω η ) v , 1 α v , 1 α d x 2 d η 2 k γ 2 m 2 0 t L 0 e x p ( ω η ) v , 1 v , 1 β β d x 2 d η .
Proof. 
Multiplying both sides of Equation (5) by e x p ( ω η ) ( z ξ ) v , η and integrating, we can obtain
0 = 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η ( ρ 2 v , η η + γ v , α α β β + λ u , α α m 2 k v , α α η ) d A d η = ω ρ 2 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η 2 d A d η + ρ 2 2 0 z L ξ e x p ( ω t ) ( z ξ ) v , t 2 d A λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α η u , α d A d η + λ 0 t 0 z L ξ e x p ( ω η ) v , η u , 1 d A d η + γ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η v , α α β β d A d η + m 2 k 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α η v , α η d A d η m 2 2 k 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + m 2 2 k 0 t L 0 e x p ( ω η ) v , η 2 d x 2 d η + m 2 k z 0 t L 0 e x p ( ω η ) v , η v , 1 η d x 2 d η .
Next, we begin to deal with the term γ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η v , α α β β d A d η .
γ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , η v , α α β β d A d η = γ ω 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , α β v , α β d A d η + γ 2 0 z L ξ e x p ( ω η ) ( z ξ ) v , α β v , α β d A 2 γ 0 t 0 z L ξ e x p ( ω η ) v , α η v , α 1 d A d η + γ z 0 t L 0 e x p ( ω η ) v , α η v , α 1 d x 2 d η γ z 0 t L 0 e x p ( ω η ) v , η v , 1 β β d x 2 d η .
Now let us deal with 2 γ 0 t 0 z L ξ e x p ( ω η ) v , α η v , α 1 d A d η .
2 γ 0 t 0 z L ξ e x p ( ω η ) v , α η v , α 1 d A d η = 2 γ 0 t 0 z L ξ e x p ( ω η ) v , α α η v , 1 d A d η 2 γ 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η + 2 γ 0 t L 0 e x p ( ω η ) v , 1 η v , 1 d x 2 d η .
Using the Equation (5), we can get
2 γ 0 t 0 z L ξ e x p ( ω η ) v , α α η v , 1 d A d η = 2 γ 0 t 0 z L ξ e x p ( ω η ) ( k m 2 ρ 2 v , η η + k m 2 γ v , α α β β + k m 2 λ u , α α ) v , 1 d A d η = k ρ 2 γ m 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + k ρ 2 γ m 2 0 t L 0 e x p ( ω η ) v , η 2 d x 2 d η + 2 k γ ρ 2 ω m 2 0 t 0 z L ξ e x p ( ω η ) v , η v , 1 d A d η + 2 k γ ρ 2 m 2 0 z L ξ e x p ( ω η ) v , t v , 1 d A + 2 k γ 2 m 2 0 t 0 z L ξ e x p ( ω η ) v , 1 v , α α β β d A d η 2 k λ γ m 2 0 t 0 z L ξ e x p ( ω η ) u , α v , 1 α d A d η + 2 k λ γ m 2 0 t L z e x p ( ω η ) u , 1 v , 11 d x 2 d η 2 k λ γ m 2 0 t L 0 e x p ( ω η ) u , 1 v , 11 d x 2 d η .
Now, let us deal with the term 2 k γ 2 m 2 0 t 0 z L ξ e x p ( ω η ) v , 1 v , α α β β d A d η .
2 k γ 2 m 2 0 t 0 z L ξ e x p ( ω η ) v , 1 v , α α β β d A d η = 2 k γ 2 m 2 0 t 0 z L ξ e x p ( ω η ) v , 1 α v , α β β d A d η + 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 v , 1 β β d x 2 d η 2 k γ 2 m 2 0 t L 0 e x p ( ω η ) v , 1 v , 1 β β d x 2 d η = k γ 2 m 2 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η k γ 2 m 2 0 t L 0 e x p ( ω η ) v , α β v , α β d x 2 d η 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + 2 k γ 2 m 2 0 t L 0 e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 v , 1 β β d x 2 d η 2 k γ 2 m 2 0 t L 0 e x p ( ω η ) v , 1 v , 1 β β d x 2 d η .
A combination of (15) and (17)–(21), we obtain
φ 3 ( z , t ) = m 2 2 k 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + 2 γ 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η 2 k λ γ m 2 0 t L z e x p ( ω η ) u , 1 v , 11 d x 2 d η k γ 2 m 2 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 v , 1 β β d x 2 d η .
The proof of Lemma 3 is finished. □
Lemma 4.
We suggest u and v are classical solutions of problems (4)–(7), and we define a function φ 4 ( z , t ) as:
φ 4 ( z , t ) = ρ 2 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + γ 0 t L z e x p ( ω η ) v , 1 α β v , α β d x 2 d η γ 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + γ 2 0 t L z e x p ( ω η ) v , 11 2 d x 2 d η γ 2 0 t L z e x p ( ω η ) v , 12 2 d x 2 d η .
Then, φ 4 ( z , t ) can also be expressed as:
φ 4 ( z , t ) = ρ 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 1 η 2 d A d η + m 2 2 k 0 z L ξ e x p ( ω t ) ( z ξ ) v , 1 α v , 1 α d A + γ 0 t 0 z L ξ e x p ( ω η ) v , 1 α β v , 1 α β d A d η ρ 2 ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , η d A d η ρ 2 0 z L ξ e x p ( ω t ) ( z ξ ) v , 11 v , t d A + λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 α u , α d A d η λ 0 t 0 z L ξ e x p ( ω η ) v , 11 u , 1 d A d η + 0 t 0 z L ξ e x p ( ω η ) v , 12 v , 2 η d A d η + k 4 ( z , t ) ,
with
k 4 ( z , t ) = ρ 2 2 0 t L 0 e x p ( ω η ) v , η 2 d x 2 d η ρ 2 z 0 z L 0 e x p ( ω η ) v , 1 η v , η d x 2 d η + m 2 k z 0 t L 0 e x p ( ω η ) v , 12 v , 2 η d x 2 d η + γ 0 t L 0 e x p ( ω η ) v , 1 α β v , α β d x 2 d η γ 2 0 t L 0 e x p ( ω η ) v , 1 α v , 1 α d x 2 d η γ z 0 t L 0 e x p ( ω η ) v , 11 α v , α 1 d x 2 d η + γ 2 0 t L 0 e x p ( ω η ) v , 11 2 d x 2 d η γ 2 0 t L 0 e x p ( ω η ) v , 12 2 d x 2 d η + γ z 0 t L 0 e x p ( ω η ) v , 11 v , 1 β β d x 2 d η + λ z 0 t L 0 e x p ( ω η ) v , 11 u , 1 d x 2 d η .
Proof. 
Multiplying both sides of Equation (5) by e x p ( ω η ) ( z ξ ) v , 11 and integrating, we can obtain
0 = ρ 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , η η d A d η + γ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , α α β β d A d η + λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 u , α α d A d η m 2 k 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , α α η d A d η .
Using the divergence theorem, the first term on the right of Equation (22) can be rewritten as
ρ 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , η η d A d η = ρ 2 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 1 η v , 1 η d A d η ρ 2 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + ρ 2 2 0 t L 0 e x p ( ω η ) v , η 2 d x 2 d η + ρ 2 z 0 t L 0 e x p ( ω η ) v , 1 η v , η d x 2 d η + ρ 2 ω 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , η d A d η + ρ 2 0 z L ξ e x p ( ω t ) ( z ξ ) v , 11 v , t d A .
Similarly, the second term on the right of Equation (22) can be rewritten as
γ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , α α β β d A d η = γ 0 t 0 z L ξ e x p ( ω η ) v , 1 α β v , 1 α β d A d η + γ 0 t L z e x p ( ω η ) v , 1 α β v , α β d x 2 d η γ 0 t L 0 e x p ( ω η ) v , 1 α β v , α β d x 2 d η γ 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + γ 2 0 t L 0 e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + γ z 0 t L 0 e x p ( ω η ) v , 11 α v , α 1 d x 2 d η + γ 2 0 t L z e x p ( ω η ) v , 11 2 d x 2 d η γ 2 0 t L 0 e x p ( ω η ) v , 11 2 d x 2 d η γ 2 0 t L z e x p ( ω η ) v , 12 2 d x 2 d η + γ 2 0 t L 0 e x p ( ω η ) v , 12 2 d x 2 d η γ z 0 t L 0 e x p ( ω η ) v , 11 v , 1 β β d x 2 d η .
The third term on the right of Equation (22) can be rewritten as
λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 u , α α d A d η = λ 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 α u , α d A d η + λ 0 t 0 z L ξ e x p ( ω η ) v , 11 u , 1 d A d η λ z 0 t L 0 e x p ( ω η ) v , 11 u , 1 d x 2 d η .
The fourth term on the right of Equation (22) can be rewritten as
m 2 k 0 t 0 z L ξ e x p ( ω η ) ( z ξ ) v , 11 v , α α η d A d η = m 2 2 k 0 z L ξ e x p ( ω t ) ( z ξ ) v , 1 α v , 1 α d A m 2 k z 0 t L 0 e x p ( ω η ) ( z ξ ) v , 12 v , 2 η d x 2 d η 0 t 0 z L ξ e x p ( ω η ) v , 12 v , 2 η d A d η .
A combination of (24)–(28) gives (23). The proof of Lemma 4 is finished. □
Lemma 5.
We define new energy expressions φ ( z , t ) and Φ ( z , t ) as follows:
φ ( z , t ) = φ 1 ( z , t ) + k 1 φ 2 ( z , t ) + φ 3 ( z , t ) + k 2 φ 4 ( z , t ) ,
and
Φ ( z , t ) = 0 t φ ( z , s ) d s .
The following second-order partial differential inequality holds
| Φ ( z , t ) | k 3 2 Φ ( z , t ) z 2 ,
where k 1 k 2 and k 3 are positive constance to be defined later.
Proof. 
From (9), we can get
2 φ 1 ( z , t ) z 2 = ω ρ 1 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + ρ 1 2 L z e x p ( ω t ) u , t 2 d x 2 + ω 2 0 t L z e x p ( ω η ) u , α u , α d x 2 d η + 1 2 L z e x p ( ω t ) u , α u , α d x 2 λ 0 t L z e x p ( ω η ) u , 1 η u , 1 d x 2 d η λ 0 t L z e x p ( ω η ) u , η u , 11 d x 2 d η + λ 0 t L z e x p ( ω η ) u , 11 v , η d x 2 d η + λ 0 t L z e x p ( ω η ) u , 1 v , 1 η d x 2 d η + λ ω 0 t L z e x p ( ω η ) u , 1 v , 1 d x 2 d η + λ ω 0 t L z e x p ( ω η ) u v , 11 d x 2 d η + μ 0 t L z e x p ( ω η ) u , α η u , α η d x 2 d η + λ 0 t L z e x p ( ω η ) u , α v , α η d x 2 d η + λ L z e x p ( ω t ) u , 1 v , 1 d x 2 + λ L z e x p ( ω t ) u v , 11 d x 2 + λ ω 0 t L z e x p ( ω η ) u , α v , α d x 2 d η + λ L z e x p ( ω t ) u , α v , α d x 2 .
From (12), we can get
2 φ 2 ( z , t ) z 2 = 0 t L z e x p ( ω η ) ( u , α α ) 2 d x 2 d η + μ ω 0 t L z e x p ( ω η ) ( u , α α ) 2 d x 2 d η + μ L z e x p ( ω η ) ( u , α α ) 2 d x 2 ρ 1 0 t L z e x p ( ω η ) u , β η u , β η d x 2 d η + ρ 1 0 t L z e x p ( ω η ) u , 1 η u , 1 d x 2 d η .
From (15), we can get
2 φ 3 ( z , t ) z 2 = ω ρ 2 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + ρ 2 2 L z e x p ( ω t ) v , t 2 d x 2 + m 2 k 0 t L z e x p ( ω η ) v , α η v , α η d x 2 d η + γ ω 2 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + γ 2 L z e x p ( ω t ) v , α β v , α β d x 2 λ 0 t L z e x p ( ω η ) v , α η u , α d x 2 d η + λ 0 t L z e x p ( ω η ) v , 1 η u , 1 d x 2 d η + λ 0 t L z e x p ( ω η ) v , η u , 11 d x 2 d η + 2 γ κ ρ 2 ω m 2 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η + 2 γ κ ρ 2 ω m 2 0 t L z e x p ( ω η ) v , η v , 11 d x 2 d η + 2 γ κ ρ 2 m 2 L z e x p ( ω t ) v , 1 t v , 1 d x 2 + 2 γ κ ρ 2 m 2 L z e x p ( ω t ) v , t v , 11 d x 2 2 κ λ γ m 2 0 t L z e x p ( ω η ) u , 1 α v , 1 α d x 2 d η 2 κ λ γ m 2 0 t L z e x p ( ω η ) u , α v , 11 α d x 2 d η .
From (23), we can get
2 φ 4 ( z , t ) z 2 = ρ 2 0 t L z e x p ( ω η ) v , 1 η 2 d x 2 d η + m 2 2 k L z e x p ( ω t ) v , 1 α v , 1 α d x 2 + γ 0 t L z e x p ( ω η ) v , 1 α β v , 1 α β d x 2 d η ρ 2 ω 0 t L z e x p ( ω η ) v , 11 v , η d x 2 d η + ρ 2 L z e x p ( ω η ) v , 11 v , t d x 2 + λ 0 t L z e x p ( ω η ) v , 11 α u , α d x 2 d η λ 0 t L z e x p ( ω η ) v , 111 u , 1 d x 2 d η λ 0 t L z e x p ( ω η ) v , 11 u , 11 d x 2 d η + 0 t L z e x p ( ω η ) v , 112 v , 2 η d x 2 d η + 0 t L z e x p ( ω η ) v , 12 v , 12 η d x 2 d η .
A combination of (8), (13), (16), (22) and (29) leads to
φ ( z , t ) = μ 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + λ 0 t L z e x p ( ω η ) u v , η d x 2 d η k 1 ρ 1 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η k 2 γ 2 0 t L z e x p ( ω η ) v , 12 2 d x 2 d η + m 2 2 k 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + 2 γ 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η 2 k λ γ m 2 0 t L z e x p ( ω η ) u , 1 v , 11 d x 2 d η k γ 2 m 2 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η 2 k γ 2 m 2 0 t L z e x p ( ω η ) v , 1 v , 1 β β d x 2 d η k 2 ρ 2 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + k 2 γ 0 t L z e x p ( ω η ) v , 1 α β v , α β d x 2 d η k 2 γ 2 0 t L z e x p ( ω η ) v , 1 α v , 1 α d x 2 d η + k 2 γ 2 0 t L z e x p ( ω η ) v , 11 2 d x 2 d η .
Combining (32)–(36), we have
2 φ ( z , t ) z 2 = ω ρ 1 2 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + ρ 1 2 L z e x p ( ω t ) u , t 2 d x 2 + ω 2 0 t L z e x p ( ω η ) u , α u , α d x 2 d η + 1 2 L z e x p ( ω t ) u , α u , α d x 2 + u 0 t L z e x p ( ω η ) u , α η u , α η d x 2 d η + λ ω 0 t L z e x p ( ω η ) u , α v , α d x 2 d η + λ L z e x p ( ω t ) u , α v , α d x 2 + ( ρ 1 k 1 λ ) 0 t L z e x p ( ω η ) u , 1 η u , 1 d x 2 d η λ 0 t L z e x p ( ω η ) u , η u , 11 d x 2 d η + 2 λ 0 t L z e x p ( ω η ) u , 11 v , η d x 2 d η + 2 λ 0 t L z e x p ( ω η ) u , 1 v , 1 η d x 2 d η + λ ω 0 t L z e x p ( ω η ) u , 1 v , 1 d x 2 d η + λ ω 0 t L z e x p ( ω η ) u v , 11 d x 2 d η + λ L z e x p ( ω t ) u , 1 v , 1 d x 2 + λ L z e x p ( ω t ) u v , 11 d x 2 + ( 1 + μ ω ) k 1 0 t L z e x p ( ω η ) ( u , α α ) 2 d x 2 d η + μ k 1 L z e x p ( ω t ) ( u , α α ) 2 d x 2 ρ 1 k 1 0 t L z e x p ( ω η ) u , β η u , β η d x 2 d η + ρ 2 ω 2 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + ρ 1 2 L z e x p ( ω t ) v , t 2 d x 2 + m 2 k 0 t L z e x p ( ω η ) v , α η v , α η d x 2 d η + ω γ 2 0 t L z e x p ( ω t ) v , α β v , α β d x 2 d η + γ 2 L z e x p ( ω t ) v , α β v , α β d x 2 + 2 γ k ρ 2 ω m 2 0 t L z e x p ( ω η ) v , 1 η v , 1 d x 2 d η + ( 2 γ k ρ 2 ω m 2 ρ 2 ω k 2 ) 0 t L z e x p ( ω η ) v , η v , 11 d x 2 d η + 2 γ k ρ 2 m 2 L z e x p ( ω t ) v , 1 t v , 1 d x 2 + ( 2 γ k ρ 2 m 2 + ρ 2 k 2 ) L z e x p ( ω t ) v , t v , 11 d x 2 2 k λ γ m 2 0 t L z e x p ( ω η ) u , 1 α v , 1 α d x 2 d η + ( λ k 2 2 k λ γ m 2 ) 0 t L z e x p ( ω η ) u , α v , 11 α d x 2 d η ρ 2 k 2 0 t L z e x p ( ω η ) v , 1 η 2 d x 2 d η + m 2 2 k k 2 L z e x p ( ω t ) v , 1 α v , 1 α d x 2 + γ k 2 0 t L z e x p ( ω η ) v , 1 α β v , 1 α β d x 2 d η λ k 2 0 t L z e x p ( ω η ) v , 111 u , 1 d x 2 d η λ k 2 0 t L z e x p ( ω η ) v , 11 u , 11 d x 2 d η + k 2 0 t L z e x p ( ω η ) v , 112 v , 2 η d x 2 d η + k 2 0 t L z e x p ( ω η ) v , 12 u , 12 η d x 2 d η .
Using the results (3.1)–(3.3) in [19], we have
0 t L z e x p ( ω η ) v , α v , α d x 2 d η c 1 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η ,
L z e x p ( ω t ) v , α v , α d x 2 c 1 L z e x p ( ω t ) v , α β v , α β d x 2 ,
0 t L z e x p ( ω η ) u 2 d x 2 d η c 2 0 t L z e x p ( ω η ) u , α α u , α α d x 2 d η ,
L z e x p ( ω t ) u 2 d x 2 c 2 L z e x p ( ω t ) u , α α u , α α d x 2 ,
L z e x p ( ω t ) v , 1 v , 1 d x 2 c 3 L z e x p ( ω t ) v , 1 α v , 1 α d x 2 d η ,
with c 1 , c 2 , and c 3 are positive constants.
Using the Schwarz inequality, and combining (37)–(42), we obtain
2 φ ( z , t ) z 2 ( ω ρ 1 2 λ 2 ε 4 ) 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + ρ 1 2 L z e x p ( ω t ) u , t 2 d x 2 + [ ω 2 λ ω 2 ε 1 ρ 1 k 1 λ 2 ε 3 λ ε 6 λ ω 2 ε 7 k λ γ m 2 ε 15 ( λ k 2 2 k λ γ m 2 ) ε 16 2 λ k 2 2 ε 17 ] 0 t L z e x p ( ω η ) u , α u , α d x 2 d η + ( 1 2 λ 2 ε 2 λ 2 ε 9 ) L z e x p ( ω t ) u , α u , α d x 2 + [ μ ρ 1 k 1 λ 2 ε 3 ρ 1 k 1 ] 0 t L z e x p ( ω η ) u , α η u , α η d x 2 d η + [ ( 1 + μ ω ) k 1 1 2 ε 4 λ ε 5 λ ω c 2 2 ε 8 k λ γ m 2 ε 14 λ k 2 2 ε 18 ] 0 t L z e x p ( ω η ) ( u , α η ) 2 d x 2 d η + ( μ k 1 λ c 2 2 ε 10 ) L z e x p ( ω t ) ( u , α α ) 2 d x 2 + [ ρ 2 ω 2 λ ε 5 1 2 ( 2 γ k ρ 2 ω m 2 ρ 2 ω k 2 ) ε 12 ] 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + [ ρ 2 2 1 2 ( 2 γ k ρ 2 m 2 + ρ 2 k 2 ) ε 13 ] L z e x p ( ω t ) v , t 2 d x 2 + [ m 2 k λ ε 6 γ k ρ 2 ω m 2 ε 11 k 2 2 ε 19 ρ 2 k 2 ] 0 t L z e x p ( ω η ) v , α η v , α η d x 2 d η + [ ω γ 2 λ ω c 1 2 ε 1 λ ω c 1 2 ε 7 λ ω 2 ε 8 γ k ρ 2 ω c 1 m 2 ε 11 1 2 ( 2 γ k ρ 2 ω m 2 ρ 2 ω k 2 ) 1 ε 12 k λ γ m 2 1 ε 14 λ k 2 2 ε 18 ] 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + [ γ 2 λ c 1 2 ε 2 ] L z e x p ( ω t ) v , α β v , α β d x 2 + [ m 2 2 k k 2 λ c 3 2 ε 9 λ 2 ε 10 1 2 ε 13 ( 2 γ k ρ 2 m 2 + ρ 2 k 2 ) ] L z e x p ( ω t ) v , 1 α v , 1 α d x 2 + [ γ k 2 k λ γ m 2 ε 15 ( λ k 2 2 k λ γ m 2 ) 1 2 ε 16 λ k 2 2 ε 17 k 2 2 ε 19 ] 0 t L z e x p ( ω η ) v , 1 α β v , 1 α β d x 2 d η + k 2 2 L z e x p ( ω t ) v , 12 v , 12 d x 2 + 2 γ k ρ 2 m 2 L z e x p ( ω t ) v , 1 t v , 1 d x 2 ,
where ε i , ( i = 1 , 2 , , 20 ) are arbitrary positive constants.
In (43), if we choose ε 1 = ε 2 = ε 7 = ε 9 = 1 4 λ , ε 3 = 2 , ε 4 = ω ρ 1 2 λ , ε 5 = ω ρ 2 8 λ , ε 6 = λ , ε 8 = 1 , ε 10 = μ k 1 λ c 2 , ε 11 = ε 12 = γ , ε 13 = 1 2 ( 2 γ k ρ 2 m 2 + ρ 2 k 2 ) 1 ρ 1 , ε 14 = γ ω , ε 15 = k λ γ m 2 , ε 16 = 2 λ γ , ε 17 = γ 2 λ , ε 18 = ω , ε 19 = γ 2 , k 1 = 1 2 ρ 1 ( μ 2 + λ ) , k 2 = 4 γ ; m max { 4 k k 2 [ 2 λ 2 c 3 + λ 2 c 2 2 μ k 1 + ( 2 γ k ρ 2 + ρ 2 k 2 ) 2 ρ 1 ] , 1 , 8 γ 2 k , 2 k ( 1 + γ 2 k ρ 2 ω + 4 γ 2 + 4 ρ 2 γ ) } , ω max { 2 k 1 ρ 1 + 16 λ 2 + 8 k 2 λ 2 γ 2 , 1 } , μ 8 λ ω 2 + ρ 1 ρ 2 + 4 ρ 1 λ c 1 + 8 ρ 1 k λ γ 2 , γ max { 16 λ 2 c 1 + 10 λ + 4 k ρ 2 c 1 + 4 k ρ 2 + 4 k λ , 1 } , we can get
2 φ ( z , t ) z 2 ω ρ 1 4 0 t L z e x p ( ω η ) u , η 2 d x 2 d η + ρ 1 2 L z e x p ( ω t ) u , t 2 d x 2 + ω 8 0 t L z e x p ( ω η ) u , α u , α d x 2 d η + 1 4 L z e x p ( ω t ) u , α u , α d x 2 + μ 2 0 t L z e x p ( ω η ) u , α η u , α η d x 2 d η + μ ω k 1 2 0 t L z e x p ( ω η ) ( u , α α ) 2 d x 2 d η + μ k 1 2 L z e x p ( ω t ) ( u , α α ) 2 d x 2 + ρ 2 ω 4 0 t L z e x p ( ω η ) v , η 2 d x 2 d η + ρ 2 4 L z e x p ( ω t ) v , t 2 d x 2 + m 2 2 k 0 t L z e x p ( ω η ) v , α η v , α η d x 2 d η + ω γ 4 0 t L z e x p ( ω η ) v , α β v , α β d x 2 d η + γ 4 L z e x p ( ω t ) v , α β v , α β d x 2 + m 2 4 k k 2 L z e x p ( ω t ) v , 1 α v , 1 α d x 2 + 0 t L z e x p ( ω η ) v , 1 α β v , 1 α β d x 2 d η + k 2 2 L z e x p ( ω t ) v , 12 v , 12 d x 2 + 2 γ k ρ 2 m 2 L z e x p ( ω t ) v , 1 t v , 1 d x 2 = E ( z , t ) .
We now define a new function F ( z , t ) as
F ( z , t ) = 0 t E ( z , s ) d s .
We get
F ( z , t ) = ω ρ 1 4 0 t 0 s L z e x p ( ω η ) u , η 2 d x 2 d η d s + ρ 1 2 0 t L z e x p ( ω s ) u , s 2 d x 2 d s + ω 8 0 t 0 s L z e x p ( ω η ) u , α u , α d x 2 d η d s + 1 4 0 t L z e x p ( ω s ) u , α u , α d x 2 d s + μ 2 0 t 0 s L z e x p ( ω η ) u , α η u , α η d x 2 d η d s + μ ω k 1 2 0 t 0 s L z e x p ( ω η ) ( u , α α ) 2 d x 2 d η d s + μ k 1 2 0 t L z e x p ( ω s ) ( u , α α ) 2 d x 2 d s + ρ 2 ω 4 0 t 0 s L z e x p ( ω η ) v , η 2 d x 2 d η d s + ρ 2 4 0 t L z e x p ( ω s ) v , t 2 d x 2 d s + m 2 2 k 0 t 0 s L z e x p ( ω η ) v , α η v , α η d x 2 d η d s + ω γ 4 0 t 0 s L z e x p ( ω η ) v , α β v , α β d x 2 d η d s + γ 4 0 t L z e x p ( ω s ) v , α β v , α β d x 2 d s + m 2 4 k k 2 0 t L z e x p ( ω s ) v , 1 α v , 1 α d x 2 d s + 0 t 0 s L z e x p ( ω η ) v , 1 α β v , 1 α β d x 2 d η d s + k 2 2 0 t L z e x p ( ω s ) v , 12 2 d x 2 d s + ω γ k ρ 2 m 2 0 t L z e x p ( ω s ) v , 1 2 d x 2 d s + γ k ρ 2 m 2 L z e x p ( ω t ) v , 1 2 d x 2 .
We can easily get
F ( z , t ) 0 .
Following the same procedures as (37)–(44), we obtain
2 φ ( z , t ) z 2 3 2 E ( z , t ) .
Inserting (30) into (48), we have
2 Φ ( z , t ) z 2 3 2 F ( z , t ) .
We can also get
2 Φ ( z , t ) z 2 F ( z , t ) .
Combining (47) and (50), we obtain
2 Φ ( z , t ) z 2 = 2 0 t φ ( z , s ) d s z 2 0 .
Combining (36), (44) and (51), using the Schwarz’s inequality, we can obtain
| Φ ( z , t ) | k 3 2 Φ ( z , t ) z 2 ,
where k 3 is a computable positive constant. The proof of Lemma 5 is finished. □

3. Phragmén-Lindelöf Alternative Results

Based on Lemmas 1–5, we can get the following Lemmas:
Lemma 6.
We suggest u and v are classical solutions of problems (4)–(7) in the semi-infinite strip Ω 0 defined by (1), if there exists a z 0 0 such that Φ ( z 0 , t ) z > 0 , then the following inequality holds:
lim z e k 4 z G ( z , t ) c 1 ( t ) ,
where c 1 ( t ) = 2 3 [ z Φ ( z 1 , t ) + k 4 Φ ( z 1 , t ) ] e k 4 z 1 , G ( z , t ) will be defined in (61).
Proof. 
Since 2 Φ ( z 0 , t ) z 2 0 for all z 0 , we can get Φ ( z , t ) z > 0 for all z z 0 .
We know the fact Φ ( z , t ) Φ ( z 0 , t ) + Φ ( z 0 , t ) z ( z z 0 ) for all z z 0 .
If we let z + , we can obtain Φ ( z , t ) > 0 .
So, wo have the following results:
There exists a z 1 > z 0 such that Φ ( z 1 , t ) z > 0 and Φ ( z 1 , t ) > 0 .
From (31), we can get
2 Φ ( z , t ) z 2 k 4 2 Φ ( z , t ) 0 ,
with k 4 = 1 k 3 .
Equation (53) can be rewritten as
z e k 4 z z Φ ( z , t ) + k 4 Φ ( z , t ) 0 ,
or
z e k 4 z z Φ ( z , t ) k 4 Φ ( z , t ) 0 .
Integrating (54) and (55), we obtain
z Φ ( z , t ) + k 4 Φ ( z , t ) [ z Φ ( z 1 , t ) + k 4 Φ ( z 1 , t ) ] e k 4 ( z z 1 ) ,
or
z Φ ( z , t ) k 4 Φ ( z , t ) [ z Φ ( z 1 , t ) k 4 Φ ( z 1 , t ) ] e k 4 ( z z 1 ) ,
for all z z 1 .
Combining (56) and (57), we have
z Φ ( z , t ) z Φ ( z 1 , t ) e k 4 ( z z 1 ) + e k 4 ( z z 1 ) 2 + k 4 Φ ( z 1 , t ) e k 4 ( z z 1 ) e k 4 ( z z 1 ) 2 .
Integrating (49) from z 1 to z, we obtain
z 1 z 2 Φ ( z , t ) z 2 d ξ 3 2 z 1 z F ( ξ , t ) d ξ .
Inserting (59) into (58), we have
3 2 z 1 z F ( ξ , t ) d ξ z Φ ( z 1 , t ) e k 4 ( z z 1 ) + e k 4 ( z z 1 ) 2 1 + k 4 Φ ( z 1 , t ) e k 4 ( z z 1 ) e k 4 ( z z 1 ) 2 .
If we define
G ( z , t ) = z 1 z F ( ξ , t ) d ξ ,
Combining (46) and (61), we have
G ( z , t ) = ω ρ 1 4 0 t 0 s z 1 z L ξ e x p ( ω η ) u , η 2 d A d η d s + ρ 1 2 0 t z 1 z L ξ e x p ( ω s ) u , s 2 d A d s + ω 8 0 t 0 s z 1 z L ξ e x p ( ω η ) u , α u , α d A d η d s + 1 4 0 t z 1 z L ξ e x p ( ω s ) u , α u , α d A d s + μ 2 0 t 0 s z 1 z L ξ e x p ( ω η ) u , α η u , α η d A d η d s + μ ω k 1 2 0 t 0 s z 1 z L ξ e x p ( ω η ) ( u , α α ) 2 d A d η d s + μ k 1 2 0 t z 1 z L ξ e x p ( ω s ) ( u , α α ) 2 d A d s + ρ 2 ω 4 0 t 0 s z 1 z L ξ e x p ( ω η ) v , η 2 d A d η d s + ρ 2 4 0 t z 1 z L ξ e x p ( ω s ) v , t 2 d A d s + m 2 2 k 0 t 0 s z 1 z L ξ e x p ( ω η ) v , α η v , α η d A d η d s + ω γ 4 0 t 0 s z 1 z L ξ e x p ( ω η ) v , α β v , α β d A d η d s + γ 4 0 t z 1 z L ξ e x p ( ω s ) v , α β v , α β d A d s + m 2 4 k k 2 0 t z 1 z L ξ e x p ( ω s ) v , 1 α v , 1 α d A d s + 0 t 0 s z 1 z L ξ e x p ( ω η ) v , 1 α β v , 1 α β d A d η d s + k 2 2 0 t z 1 z L ξ e x p ( ω s ) v , 12 2 d A d s + ω γ k ρ 2 m 2 0 t z 1 z L ξ e x p ( ω s ) v , 1 2 d A d s + γ k ρ 2 m 2 z 1 z L ξ e x p ( ω t ) v , 1 2 d A .
we obtain
lim z e k 4 z G ( z , t ) c 1 ( t ) ,
with c 1 ( t ) = 2 3 [ z Φ ( z 1 , t ) + k 4 Φ ( z 1 , t ) ] e k 4 z 1 . □
Lemma 7.
We suggest u and v are classical solutions of problems (4)–(7) in the semi-infinite strip Ω 0 defined by (1). If Φ ( z , t ) z 0 for all z 0 , then the following inequality holds:
H ( z , t ) c 2 ( t ) e k 4 z .
where c 2 ( t ) = z Φ ( 0 , t ) + k 4 Φ ( 0 , t ) ] , H ( z , t ) will be defined in (66).
Proof. 
If we suggest there exists a z 0 > 0 , such that Φ ( z 0 , t ) < 0 . Since Φ ( z , t ) z 0 for all z 0 , we can get Φ ( z , t ) Φ ( z 0 , t ) < 0 for all z z 0 . From (31), we have Φ ( z , t ) z Φ ( z 0 , t ) z = 2 Φ ( ξ , t ) z ( z z 0 ) 1 k 3 Φ ( ξ , t ) ( z z 0 ) , with z 0 < ξ < z . let z , we have Φ ( z , t ) z > 0 . Which gives a contradiction to Φ ( z , t ) z 0 for all z 0 . So we can conclude Φ ( z , t ) 0 for all z 0 .
Integrating (53) from 0 to z, we obtain
Φ ( z , t ) z + k 4 Φ ( z , t ) c 2 ( t ) e k 4 z ,
with c 2 ( t ) = z Φ ( 0 , t ) + k 4 Φ ( 0 , t ) ] .
Since Φ ( z , t ) 0 for for all z 0 , we have
Φ ( z , t ) z c 2 ( t ) e k 4 z .
From (64), we can get the results Φ ( z , t ) and Φ ( z , t ) z tend to 0 as z . We thus have
Φ ( z , t ) z = z 2 Φ ( ξ , t ) z 2 d ξ z F ( ξ , t ) d ξ = H ( z , t ) .
Combining (46) and (66), we have
H ( z , t ) = ω ρ 1 4 0 t 0 s z L ξ e x p ( ω η ) u , η 2 d A d η d s + ρ 1 2 0 t z L ξ e x p ( ω s ) u , s 2 d A d s + ω 8 0 t 0 s z L ξ e x p ( ω η ) u , α u , α d A d η d s + 1 4 0 t z L ξ e x p ( ω s ) u , α u , α d x 2 d s + μ 2 0 t 0 s z L ξ e x p ( ω η ) u , α η u , α η d A d η d s + μ ω k 1 2 0 t 0 s z L ξ e x p ( ω η ) ( u , α α ) 2 d A d η d s + μ k 1 2 0 t z L ξ e x p ( ω s ) ( u , α α ) 2 d A d s + ρ 2 ω 4 0 t 0 s z L ξ e x p ( ω η ) v , η 2 d A d η d s + ρ 2 4 0 t z L ξ e x p ( ω s ) v , t 2 d A d s + m 2 2 k 0 t 0 s z L ξ e x p ( ω η ) v , α η v , α η d A d η d s + ω γ 4 0 t 0 s z L ξ e x p ( ω η ) v , α β v , α β d A d η d s + γ 4 0 t z L ξ e x p ( ω s ) v , α β v , α β d A d s + m 2 4 k k 2 0 t z L ξ e x p ( ω s ) v , 1 α v , 1 α d A d s + 0 t 0 s z L ξ e x p ( ω η ) v , 1 α β v , 1 α β d A d η d s + k 2 2 0 t z L ξ e x p ( ω s ) v , 12 2 d A d s + ω γ k ρ 2 m 2 0 t z L ξ e x p ( ω s ) v , 1 2 d A d s + γ k ρ 2 m 2 z L ξ e x p ( ω t ) v , 1 2 d A .
Inserting (66) into (65), we obtain
H ( z , t ) c 2 ( t ) e k 4 z .
Based on Lemmas 6 and 7, we can get the following theorem.
Theorem 1.
We suggest u and v are classical solutions of problems (4)–(7) in the semi-infinite strip Ω 0 defined by (1), then either inequality
lim z e k 4 z G ( z , t ) c 1 ( t )
holds or
H ( z , t ) c 2 ( t ) e k 4 z
holds.
Theorem 1 shows that either the energy expression G ( z , t ) grows exponentially or the energy expression H ( z , t ) decays exponentially.

4. Conclusions

In this paper, we studied the spatial properties of solutions for a class of thermoelastic plate with biharmonic operator in a semi-infinite cylinder in R 2 . The P h r a g m e ´ n - L i n d e l o ¨ f alternative results were obtained based on a second-order inequality. Our method is also valid for the hyperbolic–parabolic coupling equations. We can only deal with the linear equations. For the case of nonlinear equations, it is difficult to study the spatial properties. The results of these future studies will be of great interest to researchers in our field.

Author Contributions

Writing–original draft, S.L., original draft preparation J.S. and review and editing, B.O. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported national natural Science Foundation of China(Grant # 61907010), natural Science in Higher Education of Guangdong, China (Grant # 2018KZDXM048), the General Project of Science Research of Guangzhou (Grant # 201707010126). Guangdong Province Educational Science “Thirteenth Five-Year Plan” 2020 research project approval (NO. 2020JKDY040).

Data Availability Statement

This paper focuses on theoretical analysis, not involving experiments and data.

Acknowledgments

The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Horgan, C.O.; Knowles, J.K. Recent development concerning Saint-Venant’s principle. Adv. Appl. Mech. 1983, 23, 179–269. [Google Scholar]
  2. Horgan, C.O. Recent development concerning Saint-Venant’s principle: An update. Appl. Mech. Rev. 1989, 42, 295–303. [Google Scholar] [CrossRef]
  3. Horgan, C.O. Recent development concerning Saint-Venant’s principle: An second update. Appl. Mech. Rev. 1996, 49, 101–111. [Google Scholar] [CrossRef]
  4. D’Apice, C. Convexity considerations and spatial behavior for the harmonic vibrations in thermoelastic plates. J. Math. Anal. Appl. 2005, 312, 44–60. [Google Scholar] [CrossRef] [Green Version]
  5. D’Apice, C. On a generalized biharmonic equation in plane polars with applications to functionally graded material. Aust. J. Math. Anal. Appl. 2006, 3, 1–15. [Google Scholar]
  6. Chirita, S.; D’Apice, C. On spatial growth or decay of solutions to a non simple heat conduction problem in a semi-infinite strip. An. Stiintifice Univ. Alexandru Ioan Cuza Iasi Mat. 2002, 48, 75–100. [Google Scholar]
  7. Chirita, S.; Ciarletta, M.; Fabrizio, M. Some spatial decay estimates in time-dependent Stokes slow flows. Appl. Anal. 2001, 77, 211–231. [Google Scholar] [CrossRef]
  8. Fabrizio, M.; Chirita, S. Some qualitative results on the dynamic viscoelasticity of the Reissner-Mindlin plate model. Q. J. Mech. Appl. Math. 2004, 57, 59–78. [Google Scholar] [CrossRef] [Green Version]
  9. Li, Y.F.; Lin, C.H. Spatial Decay for Solutions to 2-D Boussinesq System with Variable Thermal Diffusivity. Acta Appl. Math. 2018, 154, 111–130. [Google Scholar] [CrossRef]
  10. Borrelli, A.; Patria, M.C. Energy bounds in dynamical problems for a semi-infinite magnetoelastic beam. J. Appl. Math. Phys. ZAMP 1996, 47, 880–893. [Google Scholar] [CrossRef]
  11. Diaz, J.I.; Quintallina, R. Spatial and continuous dependence estimates in linear viscoelasticity. J. Math. Anal. Appl. 2002, 273, 1–16. [Google Scholar] [CrossRef] [Green Version]
  12. Quintanilla, R. A spatial decay estimate for the hyperbolic heat equation. SIAM J. Math. Anal. 1998, 27, 78–91. [Google Scholar] [CrossRef]
  13. Quintanilla, R. Phragmen-Lindelof alternative in nonlinear viscoelasticity. Nonlinear Anal. 1998, 14, 7–16. [Google Scholar] [CrossRef]
  14. Payne, L.E.; Schaefer, P.W. Some Phragmén-Lindelöf Type Results for the Biharmonic Equation. J. Appl. Math. Phys. ZAMP 1994, 45, 414–432. [Google Scholar]
  15. Lin, C.H. Spatial Decay Estimates and Energy Bounds forth Stokes Flow Equation. Stab. Appl. Anal. Contin. Media 1992, 2, 249–264. [Google Scholar]
  16. Knowles, J.K. An Energy Estimate for the Biharmonic Equationand its Application to Saint-Venant’s Principle in Plane elasto statics. Indian J. Pure Appl. Math. 1983, 14, 791–805. [Google Scholar]
  17. Flavin, J.N. On Knowles’ version of Saint-Venant’s Principle in Two-dimensional Elastostatics. Arch. Ration. Mech. Anal. 1973, 53, 366–375. [Google Scholar] [CrossRef]
  18. Horgan, C.O. Decay Estimates for the Biharmonic Equation with Applications to Saint-Venant’s Principles in Plane Elasticity and Stokes flows. Q. Appl. Math. 1989, 47, 147–157. [Google Scholar] [CrossRef] [Green Version]
  19. Liu, Y.; Lin, C.H. Phragmén-Lindelöftype alternativeresults for the stokes flow equation. Math. Inequalities Appl. 2006, 9, 671–694. [Google Scholar] [CrossRef]
  20. Chen, W.; Palmieri, A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discret. Contin. Dyn. Syst. 2020, 40, 5513–5540. [Google Scholar] [CrossRef]
  21. Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 2021, 292, 176–219. [Google Scholar] [CrossRef]
  22. Palmieri, A.; Takamura, H. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal. 2019, 187, 467–492. [Google Scholar] [CrossRef] [Green Version]
  23. Palmieri, A.; Reissig, M. Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. Math. Nachr. 2018, 291, 1859–1892. [Google Scholar] [CrossRef]
  24. Liu, Y.; Chen, W. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z. Angew. Math. Phys. 2020, 71, 1–14. [Google Scholar] [CrossRef] [Green Version]
  25. Liu, Y.; Li, Y.; Shi, J. Estimates for the linear viscoelastic damped wave equation on the Heisenberg group. J. Differ. Equ. 2021, 285, 663–685. [Google Scholar] [CrossRef]
  26. Liu, Y.; Chen, Y.; Luo, C.; Lin, C. Phragmén-Lindelöf alternative results for the shallow water equations for transient compressible viscous flow. J. Math. Anal. Appl. 2013, 398, 409–420. [Google Scholar] [CrossRef]
  27. Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar] [CrossRef]
  28. Liu, Y.; Xiao, S. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain. Nonlinear Anal. Real World Appl. 2018, 42, 308–333. [Google Scholar] [CrossRef]
  29. Liu, Y.; Xiao, S.; Lin, Y. Continuous dependence for the Brinkman–Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
  30. Santos, M.L.; Munoz Rivera, J.E. Analytic property of a coupled system of wave-plate type with thermal effect. Differ. Integral Equ. 2011, 24, 965–972. [Google Scholar]
  31. Love, A.E.H. Mathematical Theory of Elasticity, 4th ed.; Dover Publications: New York, NY, USA, 1942. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Luo, S.; Shi, J.; Ouyang, B. Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry 2021, 13, 2256. https://doi.org/10.3390/sym13122256

AMA Style

Luo S, Shi J, Ouyang B. Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry. 2021; 13(12):2256. https://doi.org/10.3390/sym13122256

Chicago/Turabian Style

Luo, Shiguang, Jincheng Shi, and Baiping Ouyang. 2021. "Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate" Symmetry 13, no. 12: 2256. https://doi.org/10.3390/sym13122256

APA Style

Luo, S., Shi, J., & Ouyang, B. (2021). Phragmén-Lindelöf Alternative Results for a Class of Thermoelastic Plate. Symmetry, 13(12), 2256. https://doi.org/10.3390/sym13122256

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop