Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators
Abstract
:1. Introduction
2. Simpson’s-Type Inequalities for Twice-Differentiable Functions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 1–18. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2020, 60, 2191–2199. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef] [Green Version]
- Matloka, M. Some inequalities of Simpson type for h-convex functions via fractional integrals. Abstr. Appl. Anal. 2015, 2015, 956850. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, M.E.; Akdemir, A.O.; Kavurmacı, H. On the Simpson’s inequality for convex functions on the coordinates. Turk. J. Anal. Number Theory 2014, 2, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Park, J. On Simpson-like type integral inequalities for differentiable preinvex functions. Appl. Math. Sci. 2013, 7, 6009–6021. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Qaisar, S.; Hussain, S. On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 2017, 23, 1137–1145. [Google Scholar]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, İ.Y.M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 2020, 1–26. [Google Scholar] [CrossRef]
- Ertuğral, F.; Sarikaya, M.Z. Simpson type integral inequalities for generalized fractional integral. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2019, 113, 3115–3124. [Google Scholar] [CrossRef]
- Hussain, S.; Khalid, J.; Chu, Y.M. Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 2020, 5, 5859–5883. [Google Scholar] [CrossRef]
- Kermausuor, S. Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 2021, 45, 709–720. [Google Scholar] [CrossRef]
- Lei, H.; Hu, G.; Nie, J.; Du, T. Generalized Simpson-type inequalities considering first derivatives through the k-Fractional Integrals. IAENG Int. J. Appl. Math. 2021, 50, 1–8. [Google Scholar]
- Luo, C.; Du, T. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
- Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for κ-fractional integrals and their applications. AIMS Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
- Sarıkaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Ali, M.A.; Ntouyas, S.K.; Tariboon, J. Some Parameterized Quantum Midpoint and Quantum Trapezoid Type Inequalities for Convex Functions with Applications. Entropy 2021, 23, 996. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2021, 44, 378–390. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Xi, B.Y.; Qi, F. Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 2015, 26, 741–752. [Google Scholar] [CrossRef]
- Hussain, S.; Qaisar, S. More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.K.J.-D.; Hussain, S.; Latif, M.A. Simpson’s Type Inequalities for Co-Ordinated Convex Functions on Quantum Calculus. Symmetry 2019, 11, 768. [Google Scholar]
- Li, Y.; Du, T. Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions. J. Egypt. Math. Soc. 2016, 24, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Z. An inequality of Simpson type. Proc. R. Soc. A 2005, 461, 2155–2158. [Google Scholar] [CrossRef]
- Liu, W. Some Simpson type inequalities for h-convex and (α,m)-convex functions. J. Comput. Anal. Appl. 2014, 16, 1005–1012. [Google Scholar]
- Simic, S.; Bin-Mohsin, B. Simpson’s Rule and Hermite-Hadamard Inequality for Non-Convex Functions. Mathematics 2020, 8, 1248. [Google Scholar] [CrossRef]
- Siricharuanun, P.; Erden, S.; Ali, M.A.; Budak, H.; Chasreechai, S.; Sitthiwirattham, T. Some New Simpson’s and Newton’s Formulas Type Inequalities for Convex Functions in Quantum Calculus. Mathematics 2021, 9, 1992. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Inform. 2013, 9, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Nertherland, 2006. [Google Scholar]
- Miller, S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Budak, H.; Kara, H.; Hezenci, F. Fractional Simpson type inequalities for twice differentiable functions. Turk. J. Math. 2021. submitted. [Google Scholar]
- Hezenci, F.; Budak, H.; Kara, H. New version of Fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 2021, 460. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite-Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Budak, H.; Yildirim, S.K.; Kara, H.; Yildirim, H. On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals. Math. Methods Appl. Sci. 2021, 13069–13098. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Budak, H.; Ertuğral, F.; Pehlivan, E. Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals. Filomat 2019, 33, 4967–4979. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Pehlivan, E.; Kösem, P. On New Extensions of Hermite-Hadamard inequalities for generalized fractional integrals. Sahand Commun. Math. Anal. 2021, 18, 73–88. [Google Scholar]
- Kashuri, A.; Set, E.; Liko, R. Some new fractional trapezium-type inequalities for preinvex functions. Fractal Fract. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H.; Sarikaya, M.Z. Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals. J. Inequal. Appl. 2020, 2020, 222. [Google Scholar] [CrossRef]
- You, X.X.; Ali, M.A.; Budak, H.; Agarwal, P.; Chu, Y.M. Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals. J. Inequal. Appl. 2021, 2021, 102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Kara, H.; Tariboon, J.; Asawasamrit, S.; Budak, H.; Hezenci, F. Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators. Symmetry 2021, 13, 2249. https://doi.org/10.3390/sym13122249
Ali MA, Kara H, Tariboon J, Asawasamrit S, Budak H, Hezenci F. Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators. Symmetry. 2021; 13(12):2249. https://doi.org/10.3390/sym13122249
Chicago/Turabian StyleAli, Muhammad Aamir, Hasan Kara, Jessada Tariboon, Suphawat Asawasamrit, Hüseyin Budak, and Fatih Hezenci. 2021. "Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators" Symmetry 13, no. 12: 2249. https://doi.org/10.3390/sym13122249
APA StyleAli, M. A., Kara, H., Tariboon, J., Asawasamrit, S., Budak, H., & Hezenci, F. (2021). Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators. Symmetry, 13(12), 2249. https://doi.org/10.3390/sym13122249