Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems
Abstract
:1. Introduction
- For singularly perturbed reaction–diffusion problems, the boundary layer structure is considerably more complicated because of the parabolic layers along all boundary edges [21]. As a result, the regularity of the solution is complex. This adds many difficulties to the theoretical analysis, such as in the construction of layer-adapted meshes and the estimates of various approximation errors.
- Better than the convergence order obtained in [9] for the convection–diffusion problem, we can establish an optimal convergence of order for the LDG method in the energy norm through a more elaborate analysis for the two-dimensional Gauss–Radau projections on anisotropic meshes.
- In the reaction–diffusion region, the balanced-norm is more suitable to reflect the contribution of the boundary layer component [22]. To date, balanced-norm error estimates are only available for the Galerkin finite-element method (FEM) [23,24], mixed FEM [22], and hp-FEM [25], but not for the LDG method. For the first time, we establish the uniform convergence of the LDG method for the balanced norm.
2. The LDG Method
3. Layer-Adapted Meshes
4. Convergence Analysis
4.1. Convergence of Balanced Norm
4.2. Improvement of Convergence in Energy Norm
5. Numerical Experiments
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Lemma 4
Appendix A.2. Proof of Lemma 6
References
- Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations; Springer: Berlin, Germany, 2008. [Google Scholar]
- Linß, T. Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 2003, 192, 1061–1105. [Google Scholar] [CrossRef] [Green Version]
- Bakhvalov, N. The optimalization of methods of solving boundary value problems with a boundary layer. USSR Comput. Math. Math. Phys. 1969, 9, 139–166. [Google Scholar] [CrossRef]
- Linß, T.; Stynes, M. Numerical methods on Shishkin meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 2000, 190, 3527–3542. [Google Scholar] [CrossRef]
- Shishkin, G. Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations. Ph.D. Thesis, Keldysh Institute, Moscow, Russia, 1990. [Google Scholar]
- Cheng, Y.; Zhang, F.; Zhang, Q. Local analysis of local discontinuous Galerkin method for the time-dependent singularly perturbed problem. J. Sci. Comput. 2015, 63, 452–477. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Q. Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for one-dimensional singularly perturbed problem. J. Sci. Comput. 2017, 72, 792–819. [Google Scholar] [CrossRef]
- Johnson, C.; Nävert, U.; Pitkäranta, J. Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 1984, 45, 285–312. [Google Scholar] [CrossRef]
- Cheng, Y.; Mei, Y.J.; Roos, H.G. Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for one-dimensional singularly perturbed problem. arXiv 2012, arXiv:2012.03560. [Google Scholar] [CrossRef]
- Zhu, H.; Tian, H.; Zhang, Z. Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems. Comm. Math. Sci. 2011, 9, 1013–1032. [Google Scholar]
- Zhu, H.; Zhang, Z. Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer. Math. Comp. 2014, 83, 635–663. [Google Scholar] [CrossRef]
- Cockburn, B.; Shu, C.W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 1998, 35, 2440–2463. [Google Scholar] [CrossRef]
- Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D. Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 2001, 39, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C. Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comp. 2002, 71, 455–478. [Google Scholar]
- Cockburn, B.; Kanschat, G.; Schötzau, D.; Schwab, C. Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 2002, 40, 319–343. [Google Scholar] [CrossRef]
- Yan, J.; Shu, C.W. A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 2002, 40, 769–791. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Osher, S. A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations. J. Comput. Phys. 2011, 230, 232–244. [Google Scholar] [CrossRef]
- Baccouch, M. Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. Numer. Algor. 2021, 86, 1615–1650. [Google Scholar]
- Xu, Y.; Shu, C.W. Local discontinous Galerkin methods for high-order time-dependent partial differetial equations. Commun. Comput. Phys. 2010, 7, 1–46. [Google Scholar]
- Xie, Z.; Zhang, Z. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comp. 2010, 79, 35–45. [Google Scholar] [CrossRef]
- Clavero, C.; Gracia, J.L.; O’Riordan, E. A parameter robust numerical method for a two dimensional reaction-diffusion problem. Math. Comp. 2005, 74, 1743–1758. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Stynes, M. A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 2012, 50, 2729–2743. [Google Scholar] [CrossRef]
- Roos, H.G.; Schopf, M. Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems. ZAMM Z. Angew. Math. Mech. 2015, 95, 551–565. [Google Scholar] [CrossRef]
- Roos, H.G. Error estimates in balanced norms of finite element methods on layer-adapted meshes for second order reaction-diffusion problem. In Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Melenk, J.M.; Xenophontos, C. Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations. Calcolo 2016, 53, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Kellogg, R.B. Differentiability properties of solutions of the equation -εΔu + ru = f(x,y) in a square. SIAM J. Numer. Anal. 1990, 21, 394–408. [Google Scholar] [CrossRef]
- Apel, T. Anisotropic Finite Elements: Local Estimates and Applications; Advances in Numerical Mathematics; B.G. Teubner: Stuttgart, Germany, 1999. [Google Scholar]
S-Mesh | BS-Mesh | B-Type Mesh | |
---|---|---|---|
C | C |
k | N | S-Mesh | BS-Mesh | B-Mesh | |||||
---|---|---|---|---|---|---|---|---|---|
Balanced Error | Balanced Error | Balanced Error | |||||||
0 | 8 | 1.37 | - | 1.36 | - | 1.55 | - | ||
16 | 1.09 | 0.57 | 1.04 | 0.39 | 1.10 | 0.49 | |||
32 | 8.36 × | 0.57 | 7.47 × | 0.47 | 7.67 × | 0.52 | |||
64 | 6.31 × | 0.55 | 5.30 × | 0.50 | 5.36 × | 0.52 | |||
128 | 4.73 × | 0.54 | 3.74 × | 0.50 | 3.76 × | 0.51 | |||
256 | 3.52 × | 0.53 | 2.64 × | 0.50 | 2.65 × | 0.51 | |||
1 | 8 | 3.67 × | - | 2.48 × | - | 3.86 × | - | ||
16 | 2.22 × | 1.25 | 9.83 × | 1.33 | 1.22 × | 1.66 | |||
32 | 1.19 × | 1.32 | 3.75 × | 1.39 | 4.17 × | 1.55 | |||
64 | 5.83 × | 1.40 | 1.39 × | 1.43 | 1.46 × | 1.51 | |||
128 | 2.68 × | 1.44 | 5.04 × | 1.46 | 5.16 × | 1.50 | |||
256 | 1.18 × | 1.46 | 1.81 × | 1.48 | 1.83 × | 1.49 | |||
2 | 8 | 1.61 × | - | 7.24 × | - | 1.45 × | - | ||
16 | 7.40 × | 1.92 | 1.58 × | 2.20 | 2.26 × | 2.69 | |||
32 | 2.68 × | 2.16 | 3.11 × | 2.35 | 3.71 × | 2.61 | |||
64 | 8.19 × | 2.32 | 5.83 × | 2.42 | 6.34 × | 2.55 | |||
128 | 2.23 × | 2.42 | 1.06 × | 2.45 | 1.11 × | 2.52 | |||
256 | 5.62 × | 2.46 | 1.91 × | 2.48 | 1.95 × | 2.51 | |||
3 | 8 | 7.16 × | - | 2.16 × | - | 5.87 × | - | ||
16 | 2.52 × | 2.57 | 2.52 × | 3.10 | 4.22 × | 3.80 | |||
32 | 6.29 × | 2.96 | 2.55 × | 3.30 | 3.29 × | 3.68 | |||
64 | 1.21 × | 3.23 | 2.42 × | 3.40 | 2.74 × | 3.59 | |||
128 | 1.96 × | 3.38 | 2.22 × | 3.45 | 2.35 × | 3.54 | |||
256 | 2.85 × | 3.45 | 2.01 × | 3.47 | 2.06 × | 3.51 |
k | N | S-Mesh | BS-Mesh | B-Mesh | |||||
---|---|---|---|---|---|---|---|---|---|
Energy Error | Energy Error | Energy Error | |||||||
0 | 8 | 2.22 × | - | 2.22 × | - | 2.21 × | - | ||
16 | 1.13 × | 1.67 | 1.13 × | 0.96 | 1.13 × | 0.98 | |||
32 | 5.67 × | 1.46 | 5.66 × | 0.94 | 5.66 × | 0.99 | |||
64 | 2.84 × | 1.35 | 2.83 × | 0.99 | 2.83 × | 1.00 | |||
128 | 1.43 × | 1.28 | 1.42 × | 1.00 | 1.42 × | 1.00 | |||
256 | 7.15 × | 1.23 | 7.08 × | 1.00 | 7.08 × | 1.00 | |||
1 | 8 | 2.30 × | - | 2.29 × | - | 2.30 × | - | ||
16 | 6.06 × | 3.29 | 5.77 × | 1.99 | 5.81 × | 1.98 | |||
32 | 1.73 × | 2.67 | 1.45 × | 1.99 | 1.46 × | 1.99 | |||
64 | 5.40 × | 2.27 | 3.64 × | 2.00 | 3.66 × | 2.00 | |||
128 | 1.77 × | 2.07 | 9.12 × | 2.00 | 9.17 × | 2.00 | |||
256 | 5.81 × | 1.99 | 2.29 × | 1.99 | 2.30 × | 1.99 | |||
2 | 8 | 2.20 × | - | 1.66 × | - | 2.23 × | - | ||
16 | 7.06 × | 2.80 | 2.26 × | 2.87 | 2.89 × | 2.95 | |||
32 | 2.24 × | 2.44 | 3.05 × | 2.89 | 3.72 × | 2.96 | |||
64 | 6.01 × | 2.58 | 4.04 × | 2.92 | 4.77 × | 2.96 | |||
128 | 1.39 × | 2.72 | 5.30 × | 2.93 | 6.08 × | 2.97 | |||
256 | 2.85 × | 2.83 | 6.90 × | 2.94 | 7.74 × | 2.97 | |||
3 | 8 | 7.11 × | - | 2.19 × | - | 6.89 × | - | ||
16 | 2.31 × | 2.77 | 2.03 × | 3.43 | 4.37 × | 3.98 | |||
32 | 5.27 × | 3.14 | 1.60 × | 3.66 | 2.75 × | 3.99 | |||
64 | 9.15 × | 3.43 | 1.16 × | 3.79 | 1.73 × | 3.99 | |||
128 | 1.29 × | 3.63 | 8.05 × | 3.85 | 1.08 × | 3.99 | |||
256 | 1.56 × | 3.77 | 5.43 × | 3.89 | 6.80 × | 3.99 |
k | N | S-Mesh | BS-Mesh | B-Mesh | |||||
---|---|---|---|---|---|---|---|---|---|
Balanced Error | Balanced Error | Balanced Error | |||||||
0 | 8 | 1.32 | - | 1.30 | - | 1.63 | - | ||
16 | 1.09 | 0.48 | 9.81 × | 0.41 | 1.10 | 0.57 | |||
32 | 8.83 × | 0.45 | 7.07 × | 0.47 | 7.47 × | 0.56 | |||
64 | 6.99 × | 0.46 | 5.01 × | 0.50 | 5.15 × | 0.54 | |||
128 | 5.42 × | 0.47 | 3.54 × | 0.50 | 3.59 × | 0.52 | |||
256 | 4.13 × | 0.49 | 2.50 × | 0.50 | 2.52 × | 0.51 | |||
1 | 8 | 5.07 × | - | 3.33 × | - | 5.41 × | - | ||
16 | 3.12 × | 1.20 | 1.37 × | 1.28 | 1.72 × | 1.65 | |||
32 | 1.68 × | 1.32 | 5.27 × | 1.38 | 5.88 × | 1.55 | |||
64 | 8.25 × | 1.40 | 1.96 × | 1.43 | 2.06 × | 1.51 | |||
128 | 3.79 × | 1.44 | 7.11 × | 1.46 | 7.29 × | 1.50 | |||
256 | 1.67 × | 1.47 | 2.55 × | 1.48 | 2.58 × | 1.50 | |||
2 | 8 | 2.27 × | - | 1.01 × | - | 2.05 × | - | ||
16 | 1.05 × | 1.91 | 2.22 × | 2.19 | 3.18 × | 2.69 | |||
32 | 3.80 × | 2.16 | 4.37 × | 2.34 | 5.22 × | 2.61 | |||
64 | 1.16 × | 2.32 | 8.19 × | 2.42 | 8.93 × | 2.55 | |||
128 | 3.15 × | 2.42 | 1.50 × | 2.45 | 1.56 × | 2.52 | |||
256 | 7.95 × | 2.46 | 2.69 × | 2.47 | 2.74 × | 2.51 | |||
3 | 8 | 1.01 × | - | 3.06 × | - | 8.30 × | - | ||
16 | 3.57 × | 2.57 | 3.56 × | 3.10 | 5.96 × | 3.80 | |||
32 | 8.90 × | 2.96 | 3.61 × | 3.30 | 4.66 × | 3.68 | |||
64 | 1.71 × | 3.23 | 3.43 × | 3.40 | 3.87 × | 3.59 | |||
128 | 2.78 × | 3.38 | 3.15 × | 3.45 | 3.33 × | 3.54 | |||
256 | 4.03 × | 3.45 | 2.84 × | 3.47 | 2.91 × | 3.51 |
k | N | S-Mesh | BS-Mesh | B-Mesh | |||||
---|---|---|---|---|---|---|---|---|---|
Energy Error | Energy Error | Energy Error | |||||||
0 | 8 | 1.06 × | - | 9.30 × | - | 1.51 × | - | ||
16 | 8.15 × | 0.65 | 5.57 × | 0.74 | 7.65 × | 0.98 | |||
32 | 5.79 × | 0.73 | 3.12 × | 0.84 | 3.96 × | 0.95 | |||
64 | 3.85 × | 0.80 | 1.69 × | 0.89 | 2.05 × | 0.95 | |||
128 | 2.41 × | 0.86 | 8.95 × | 0.92 | 1.05 × | 0.96 | |||
256 | 1.45 × | 0.91 | 4.69 × | 0.95 | 5.36 × | 0.97 | |||
1 | 8 | 5.07 × | - | 3.29 × | - | 6.42 × | - | ||
16 | 2.86 × | 1.41 | 1.12 × | 1.56 | 1.76 × | 1.86 | |||
32 | 1.37 × | 1.57 | 3.35 × | 1.74 | 4.68 × | 1.91 | |||
64 | 5.73 × | 1.70 | 9.48 × | 1.82 | 1.23 × | 1.93 | |||
128 | 2.17 × | 1.80 | 2.60 × | 1.87 | 3.18 × | 1.95 | |||
256 | 7.59 × | 1.88 | 6.97 × | 1.91 | 8.19 × | 1.96 | |||
2 | 8 | 2.27 × | - | 9.73 × | - | 2.34 × | - | ||
16 | 9.63 × | 2.11 | 1.75 × | 2.47 | 3.11 × | 2.91 | |||
32 | 3.15 × | 2.37 | 2.71 × | 2.69 | 4.08 × | 2.93 | |||
64 | 8.49 × | 2.57 | 3.89 × | 2.80 | 5.31 × | 2.94 | |||
128 | 1.96 × | 2.72 | 5.36 × | 2.86 | 6.86 × | 2.95 | |||
256 | 4.04 × | 2.82 | 7.23 × | 2.89 | 8.80 × | 2.96 | |||
3 | 8 | 1.00 × | - | 2.91 × | - | 9.59 × | - | ||
16 | 3.27 × | 2.76 | 2.80 × | 3.38 | 6.15 × | 3.98 | |||
32 | 7.46 × | 3.14 | 2.23 × | 3.65 | 3.87 × | 3.99 | |||
64 | 1.29 × | 3.43 | 1.62 × | 3.78 | 2.43 × | 3.99 | |||
128 | 1.83 × | 3.63 | 1.13 × | 3.85 | 1.53 × | 3.99 | |||
256 | 2.21 × | 3.77 | 7.62 × | 3.89 | 9.56 × | 4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; Wang, S.; Xu, Z.; Song, C.; Cheng, Y. Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems. Symmetry 2021, 13, 2291. https://doi.org/10.3390/sym13122291
Mei Y, Wang S, Xu Z, Song C, Cheng Y. Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems. Symmetry. 2021; 13(12):2291. https://doi.org/10.3390/sym13122291
Chicago/Turabian StyleMei, Yanjie, Sulei Wang, Zhijie Xu, Chuanjing Song, and Yao Cheng. 2021. "Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems" Symmetry 13, no. 12: 2291. https://doi.org/10.3390/sym13122291
APA StyleMei, Y., Wang, S., Xu, Z., Song, C., & Cheng, Y. (2021). Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems. Symmetry, 13(12), 2291. https://doi.org/10.3390/sym13122291