A New Conservative Hyperchaotic System-Based Image Symmetric Encryption Scheme with DNA Coding
Abstract
:1. Introduction
- (1)
- A new conservative hyperchaotic system is established, and the complexity of the system is analyzed by using a variety of measures. It is proven that the system has good hyperchaotic characteristics.
- (2)
- A novel hyperchaos-based image encryption scheme with dynamic DNA coding is proposed. The system consists of the line-by-line scrambling process and diffusion is achieved using a DNA encoding scheme.
- (3)
- Some statistical analyses and comparative analyses are also performed for the evaluation of the image encryption algorithm. It is verified that the proposed encryption algorithm has better cryptographic performance.
2. Preliminary Works
2.1. The 4D Conservative Hyper-Chaotic System
2.1.1. Lyapunov Exponent Curve and Bifurcation Chart
2.1.2. The Scale Index
2.1.3. The Multiscale Sample Entropy and Approximate Entropy
2.1.4. TESTU01 Test
- (1)
- Void bbattery_RabbitFile(char *filename, double nb);
- (2)
- This function applies the Rabbit battery of tests to the first nb bits (or less, if nb is too large) of the binary file filename. For each test, the file is reset and the test is applied to the bit stream starting at the beginning of the file.
- (3)
- Void bbattery_AlphabitFile(char *filename, double nb);
- (4)
- This function applies the Alphabit battery of tests to the first nb bits (or less, if nb is too large) of the binary file filename.
- (5)
- Void bbattery_BlockAlphabitFile(char *filename, double nb);
2.1.5. NIST Test
2.2. DNA Coding and Operations
3. Image Encryption and Decryption Algorithm
3.1. The Encryption Algorithm
3.2. The Decryption Algorithm
4. Simulation Results and Security Analysis
4.1. Simulation Results
4.2. Key Space Analysis
4.3. Information Entropy
4.4. Histogram
4.5. Correlation Coefficient and Point Image
4.6. Plaintext Sensitivity Analysis
4.7. Key Sensitivity Analysis
4.8. Time Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.Y.; Zhong, S.Q.; Wang, T.; Chao, H.C.; Wang, J. Blockchain-based Systems and Applications: A Survey. J. Internet Technol. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, J.; Ye, Y. Multi-image encryption algorithm based on image hash, bit-plane decomposition and dynamic DNA coding. IET Image Process. 2020, 15, 885–896. [Google Scholar] [CrossRef]
- Yuan, H.-M.; Liu, Y.; Gong, L.-H.; Wang, J. A new image cryptosystem based on 2D hyper-chaotic system. Multimed. Tools Appl. 2017, 76, 8087–8108. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, X.; Lu, H.; Li, F. Deep hierarchical encoding model for sentence semantic matching. J. Vis. Commun. Image Represent. 2020, 71, 102794. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, C.; Deng, X. An Efficient Image Encryption Scheme Based on the LSS Chaotic Map and Single S-Box. IEEE Access 2020, 8, 25664–25678. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C. Secure Image Encryption Algorithm Based on Hyperchaos and Dynamic DNA Coding. Entropy 2020, 22, 772. [Google Scholar] [CrossRef] [PubMed]
- Masood, F.; Driss, M.; Boulila, W.; Ahmad, J.; Rehman, S.U.; Jan, S.U.; Qayyum, A.; Buchanan, W.J. A Lightweight Chaos-Based Medical Image Encryption Scheme Using Random Shuffling and XOR Operations. Wirel. Pers. Commun. 2021, 1–28. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Tao, J.; Xia, R.; Zhang, Q.; Yang, K.; Xiong, J.; Chen, X. The improved image inpainting algorithm via encoder and similarity constraint. Vis. Comput. 2021, 37, 1691–1705. [Google Scholar] [CrossRef]
- Diaconu, A.-V. Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Inf. Sci. 2016, 355, 314–327. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, G.; Zhu, C. A Secure and Fast Image Encryption Scheme based on Double Chaotic S-Boxes. Entropy 2019, 21, 790. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.; Jin, F.; Xu, B.; Huang, H. 2D Logistic-Sine-coupling map for image encryption. Signal Process. 2018, 149, 148–161. [Google Scholar] [CrossRef]
- Attaullah; Javeed, A.; Shah, T. Cryptosystem techniques based on the improved Chebyshev map: An application in image encryption. Multimed. Tools Appl. 2019, 78, 31467–31484. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, C. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Process. 2020, 171, 107484. [Google Scholar] [CrossRef]
- Gu, S.; Du, B.; Wan, Y. A New Four-Dimensional Non-Hamiltonian Conservative Hyperchaotic System. Int. J. Bifurc. Chaos 2020, 30, 2050242. [Google Scholar] [CrossRef]
- Lipton, R.J. DNA Solution of Hard Computational Problems. Science 1995, 268, 542–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braich, R.S.; Chelyapov, N.; Johnson, C.; Rothemund, P.W.K.; Adleman, L. Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 2002, 296, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Clelland, C.T.; Risca, V.; Bancroft, C. Hiding messages in DNA microdots. Nat. Cell Biol. 1999, 399, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Leier, A.; Richter, C.; Banzhaf, W.; Rauhe, H. Cryptography with DNA binary strands. Biosystems 2000, 57, 13–22. [Google Scholar] [CrossRef]
- Wang, X.; Hou, Y.; Wang, S.; Li, R. A New Image Encryption Algorithm Based on CML and DNA Sequence. IEEE Access 2018, 6, 62272–62285. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhu, X.; Unar, S. Image encryption scheme based on Chaos and DNA plane operations. Multimed. Tools Appl. 2019, 78, 26111–26128. [Google Scholar] [CrossRef]
- Wu, J.; Liao, X.; Yang, B. Color image encryption based on chaotic systems and elliptic curve ElGamal scheme. Signal Process. 2017, 141, 109–124. [Google Scholar] [CrossRef]
- Azimi, Z.; Ahadpour, S. Color image encryption based on DNA encoding and pair coupled chaotic maps. Multimed. Tools Appl. 2020, 79, 1727–1744. [Google Scholar] [CrossRef]
- Dagadu, J.C.; Li, J.P.; Addo, P.C. An image cryptosystem based on pseudorandomly enhanced chaotic DNA and random permutation. Multimed. Tools Appl. 2019, 78, 24979–25000. [Google Scholar] [CrossRef]
- Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 2019, 155, 44–62. [Google Scholar] [CrossRef]
- Chai, X.; Gan, Z.; Yuan, K.; Chen, Y.; Liu, X. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 2019, 31, 219–237. [Google Scholar] [CrossRef]
- Telem, A.N.K.; Fotsin, H.B.; Kengne, J. Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems. Multimed. Tools Appl. 2021, 80, 19011–19041. [Google Scholar] [CrossRef]
- Hui, Y.; Liu, H.; Fang, P. A DNA image encryption based on a new hyperchaotic system. Multimed. Tools Appl. 2021, 2021, 1–25. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, L.; Wei, X. A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 2013, 124, 3596–3600. [Google Scholar] [CrossRef]
- Song, C.; Qiao, Y. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos. Entropy 2015, 17, 6954–6968. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C. A novel and effective image encryption algorithm based on chaos and DNA encoding. Multimed. Tools Appl. 2017, 76, 6229–6245. [Google Scholar] [CrossRef]
- Hu, T.; Liu, Y.; Gong, L.-H.; Ouyang, C.-J. An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn. 2016, 87, 51–66. [Google Scholar] [CrossRef]
- Zhang, Y. The image encryption algorithm based on chaos and DNA computing. Multimed. Tools Appl. 2018, 77, 21589–21615. [Google Scholar] [CrossRef]
- Yan, X.; Wang, X.; Xian, Y. Chaotic image encryption algorithm based on arithmetic sequence scrambling model and DNA encoding operation. Multimed. Tools Appl. 2021, 80, 10949–10983. [Google Scholar] [CrossRef]
- Wen, H.; Yu, S.; Lü, J. Breaking an Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos. Entropy 2019, 21, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.; Liu, Y.; Tang, J. Breaking a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 2014, 125, 7166–7169. [Google Scholar] [CrossRef]
- Zhang, Y. Cryptanalysis of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 2015, 126, 223–229. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C. An Efficient Chosen-Plaintext Attack on an Image Fusion Encryption Algorithm Based on DNA Operation and Hyperchaos. Entropy 2021, 23, 804. [Google Scholar] [CrossRef]
- Masood, F.; Boulila, W.; Ahmad, J.; Arshad, A.; Sankar, S.; Rubaiee, S.; Buchanan, W. A Novel Privacy Approach of Digital Aerial Images Based on Mersenne Twister Method with DNA Genetic Encoding and Chaos. Remote Sens. 2020, 12, 1893. [Google Scholar] [CrossRef]
- Masood, F.; Ahmad, J.; Shah, S.A.; Jamal, S.S.; Hussain, I. A Novel Hybrid Secure Image Encryption Based on Julia Set of Fractals and 3D Lorenz Chaotic Map. Entropy 2020, 22, 274. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Wu, J.-L. Cryptanalysis and Improvement of a Chaotic Map-Based Image Encryption System Using Both Plaintext Related Permutation and Diffusion. Entropy 2020, 22, 589. [Google Scholar] [CrossRef]
- Li, M.; Zhou, K.; Ren, H.; Fan, H. Cryptanalysis of Permutation–Diffusion-Based Lightweight Chaotic Image Encryption Scheme Using CPA. Appl. Sci. 2019, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wang, G.; Sun, K. Improved Cryptanalysis and Enhancements of an Image Encryption Scheme Using Combined 1D Chaotic Maps. Entropy 2018, 20, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, E.; Yuan, M.; Du, S.; Chen, Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 2019, 73, 40–71. [Google Scholar] [CrossRef]
- Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.C.; Hassan, Z. Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 101–111. [Google Scholar] [CrossRef]
- Benítez, R.; Bolós, V.J.; Ramírez, M.E. A wavelet-based tool for studying non-periodicity. Comput. Math. Appl. 2010, 60, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Bolós, V.J.; Benítez, R. wavScalogram: Wavelet Scalogram Tools for Time Series Analysis; R Package Version 1.0.0. 2019. Available online: https://CRAN.R-project.org/package=wavScalogram (accessed on 28 September 2021).
- Guan, M.M.; Yang, X.L.; Hu, W.S. Chaotic image encryption algorithm using frequency-domain DNA encoding. Iet Image Process. 2019, 13, 1535–1539. [Google Scholar] [CrossRef]
- Cao, C.; Sun, K.; Liu, W. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 2018, 143, 122–133. [Google Scholar] [CrossRef]
- Zheng, J.; Luo, Z.; Zeng, Q. An efficient image encryption algorithm based on multi chaotic system and random DAN coding. Multimed. Tools Appl. 2020, 79, 29901–29921. [Google Scholar] [CrossRef]
- Gan, Z.; Chai, X.; Han, D.; Chen, Y. A chaotic image encryption algorithm based on 3-D bit-plane permutation. Neural Comput. Appl. 2019, 31, 7111–7130. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, T. An image encryption scheme based on DNA coding and permutation of hyper-image. Multimed. Tools Appl. 2015, 75, 17157–17170. [Google Scholar] [CrossRef]
- Alawida, M.; Samsudin, A.; Sen Teh, J.; Alkhawaldeh, R.S. A new hybrid digital chaotic system with applications in image encryption. Signal Process. 2019, 160, 45–58. [Google Scholar] [CrossRef]
- Tong, X.J.; Liu, Y.; Zhang, M.; Xu, H.; Wang, Z. An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps. Entropy 2015, 17, 181–196. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, K.; Cao, C.; Zhu, C. A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt. Lasers Eng. 2019, 121, 203–214. [Google Scholar] [CrossRef]
MsEn (t = 1) | MsEn (t = 2) | MsEn (t = 3) | MsEn (t = 4) | MsEn (t = 5) |
---|---|---|---|---|
0.1717 | 0.3529 | 0.4487 | 0.4968 | 0.5287 |
ApEn (m = 1) | ApEn (m = 2) | ApEn (m = 3) | ApEn (m = 4) | ApEn (m = 5) |
---|---|---|---|---|
0.1456 | 0.1789 | 0.2042 | 0.1914 | 0.1646 |
Test Name | Number of Bits | Number of Statistics | Summary Results |
---|---|---|---|
Rabbit | 1,048,576 | 38 | All tests were passed |
Rabbit | 6,000,000 | 39 | All tests were passed |
Test Name | Parameters | Max of p-Value | Min of p-Value | Summary Results of Alphabit |
---|---|---|---|---|
smultin_MultinomialBitsOver | Standard | 0.86 | 0.42 | All tests were passed |
sstring_HammingIndep | Standard | 0.9927 | 0.51 | |
swalk_RandomWalk1(Test on the values of the Statistic H) | Standard | 0.64 | 0.03 | |
swalk_RandomWalk1(Test on the values of the Statistic M) | Standard | 0.77 | 0.33 | |
swalk_RandomWalk1(Test on the values of the Statistic J) | Standard | 0.32 | 0.07 | |
swalk_RandomWalk1(Test on the values of the Statistic R) | Standard | 0.38 | 0.06 | |
swalk_RandomWalk1(Test on the values of the Statistic C) | Standard | 0.92 | 0.67 |
NIST Statistical Test | p-Value | Pass Rate | Results |
---|---|---|---|
Frequency (monobit) | 0.275709 | 100% | pass |
Block frequency (m = 128) | 0.534146 | 100% | pass |
Cumulative sums (forward) | 0.213309 | 100% | pass |
Cumulative sums (reverse) | 0.350485 | 100% | pass |
Runs | 0.739918 | 95.0% | pass |
Longest run of ones | 0.911413 | 100% | pass |
Rank | 0.739918 | 95.0% | pass |
FFT | 0.834308 | 100% | pass |
Non-overlapping templates (m = 9) | >0.01 | ≥90% | pass |
Overlapping templates (m = 9) | 0.350485 | 100% | pass |
Universal | 0.911413 | 95.0% | pass |
Approximate entropy (m = 10) | 0.275709 | 100% | pass |
Random-excursions | >0.01 | 100% | pass |
Random-excursions variant | >0.01 | ≥87.5% | pass |
Serial test 1 (m = 16) | 0.122325 | 100% | pass |
Serial test 2 (m = 16) | 0.534146 | 100% | pass |
Linear complexity (M = 500) | 0.437274 | 100% | pass |
Bases | Rule 1 | Rule 2 | Rule 3 | Rule 4 | Rule 5 | Rule 6 | Rule 7 | Rule 8 |
---|---|---|---|---|---|---|---|---|
00 | A | A | G | C | G | C | T | T |
01 | G | C | A | A | T | T | G | C |
10 | C | G | T | T | A | A | C | G |
11 | T | T | C | G | C | G | A | A |
ADD | A | C | G | T |
---|---|---|---|---|
A | A | C | G | T |
C | C | G | T | A |
G | G | T | A | C |
T | T | A | C | G |
SUB | A | C | G | T |
---|---|---|---|---|
A | A | T | G | C |
C | C | A | T | G |
G | G | C | A | T |
T | T | G | C | A |
XOR | A | C | G | T |
---|---|---|---|---|
A | A | C | G | T |
C | C | A | T | G |
G | G | T | A | C |
T | T | G | C | A |
Images | Image Size | Plain Images | Encrypted Images | ||||
---|---|---|---|---|---|---|---|
Ours | Ref. [48] | Ref. [49] | Ref. [10] | Ref. [23] | |||
Lena | 256 × 256 | 7.5683 | 7.9978 | 7.9968 | 7.9974 | 7.9976 | 7.9968 |
Cameraman | 256 × 256 | 7.0097 | 7.9972 | / | / | 7.9970 | / |
Baboon | 256 × 256 | 7.3385 | 7.9975 | 7.9975 | 7.9971 | 7.9968 | 7.9972 |
Peppers | 256 × 256 | 7.5251 | 7.9973 | 7.9970 | 7.9970 | 7.9975 | 7.9974 |
All black | 256 × 256 | 0 | 7.9973 | / | / | 7.9972 | / |
All white | 256 × 256 | 0 | 7.9974 | / | / | 7.9968 | / |
Lena | 512 × 512 | 7.4456 | 7.9994 | 7.9992 | 7.9995 | 7.9993 | 7.9994 |
Baboon | 512 × 512 | 7.3579 | 7.9993 | 7.9994 | 7.9992 | 7.9993 | 7.9990 |
Peppers | 512 × 512 | 7.5715 | 7.9993 | 7.9992 | 7.9993 | 7.9993 | 7.9993 |
Imagess | Directions | This Work | Ref. [33] | Ref. [52] | Ref. [24] |
---|---|---|---|---|---|
Lena | Horizontal | −0.0022 | −0.0016 | −0.0063 | −0.0086 |
Vertical | 0.0037 | 0.0043 | 0.0109 | −0.1020 | |
Diagonal | 0.0039 | −0.0026 | −0.0154 | 0.0125 | |
Cameraman | Horizontal | −0.0037 | 0.0005 | −0.0009 | −0.0211 |
Vertical | −0.0022 | 0.0020 | −0.0223 | −0.0103 | |
Diagonal | −0.0024 | 0.0002 | 0.0025 | 0.0054 | |
Peppers | Horizontal | −0.0010 | 0.0070 | 0.0038 | −0.0089 |
Vertical | −0.0002 | −0.0008 | −0.0082 | −0.0113 | |
Diagonal | 0.0021 | −0.0034 | 0.0078 | 0.0045 | |
House | Horizontal | 5.6925 × 10−5 | −0.0051 | 0.0109 | −0.0126 |
Vertical | −0.0021 | 0.0022 | −0.0173 | −0.0097 | |
Diagonal | 0.0017 | 0.0055 | −0.0002 | −0.0123 |
Images | Image Size | This Work | Ref. [33] | Ref. [52] | Ref. [24] |
---|---|---|---|---|---|
Lena | 256 × 256 | 0.99626 | 0.99610 | 0.99623 | 0.99615 |
Cameraman | 256 × 256 | 0.99603 | 0.99638 | 0.99622 | 0.99629 |
Peppers | 256 × 256 | 0.99626 | 0.99626 | 0.99573 | 0.99609 |
House | 256 × 256 | 0.99609 | 0.99625 | 0.99608 | 0.99626 |
5.1.12 | 256 × 256 | 0.99608 | 0.99648 | 0.99573 | 0.99622 |
Elaine | 512 × 512 | 0.99611 | 0.99600 | 0.99553 | 0.99610 |
5.2.08 | 512 × 512 | 0.99609 | 0.99625 | 0.99547 | 0.99629 |
7.1.03 | 512 × 512 | 0.99608 | 0.99619 | 0.99608 | 0.99613 |
Images | Image Size | This Work | Ref. [33] | Ref. [52] | Ref. [24] |
---|---|---|---|---|---|
Lena | 256 × 256 | 0.33486 | 33.5463 | 33.8144 | 33.5561 |
Cameraman | 256 × 256 | 0.335913 | 33.4239 | 33.7326 | 33.7050 |
Peppers | 256 × 256 | 0.33638 | 0.33477 | 0.33472 | 0.33628 |
House | 256 × 256 | 0.33493 | 33.5114 | 33.7656 | 33.7022 |
5.1.12 | 256 × 256 | 0.33374 | 33.4866 | 33.9272 | 33.4836 |
Elaine | 512 × 512 | 0.33445 | 33.4301 | 33.7063 | 33.6163 |
5.2.08 | 512 × 512 | 0.33539 | 33.4939 | 33.8911 | 33.6446 |
7.1.03 | 512 × 512 | 0.33509 | 33.5499 | 33.7415 | 33.7155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Yu, L.; Zhu, C. A New Conservative Hyperchaotic System-Based Image Symmetric Encryption Scheme with DNA Coding. Symmetry 2021, 13, 2317. https://doi.org/10.3390/sym13122317
Lu Q, Yu L, Zhu C. A New Conservative Hyperchaotic System-Based Image Symmetric Encryption Scheme with DNA Coding. Symmetry. 2021; 13(12):2317. https://doi.org/10.3390/sym13122317
Chicago/Turabian StyleLu, Qing, Linlan Yu, and Congxu Zhu. 2021. "A New Conservative Hyperchaotic System-Based Image Symmetric Encryption Scheme with DNA Coding" Symmetry 13, no. 12: 2317. https://doi.org/10.3390/sym13122317
APA StyleLu, Q., Yu, L., & Zhu, C. (2021). A New Conservative Hyperchaotic System-Based Image Symmetric Encryption Scheme with DNA Coding. Symmetry, 13(12), 2317. https://doi.org/10.3390/sym13122317