Homotopic Parametric Continuation Method for Determining Stationary States of Chemical Reactors with Dispersion
Abstract
:1. Introduction
2. Mathematical Foundations of the Method
3. Determination of the Solutions of the Chemical Reactor Model
4. Calculation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | |
heat capacity, kJ/(kg K) | |
concentration of component A, kmol/m | |
Damköhler number | |
E | activation energy, kJ/kmol |
F | homotopy funcion |
volumetric flow rate, m/s | |
heat of reaction, kJ/kmol | |
k | reaction rate constant, 1/[s (m/kmol)] |
n | order of reaction |
p | homotopic parameter |
peclet number of mass | |
peclet number of heat | |
rate of reaction, , kmol/(m s) | |
R | gas constant, kJ/(kmol K) |
T | temperature, K |
V | volume, m |
z | dimensionless position along the reactor |
Greek letters | |
degree of conversion | |
dimensionless number related to adiabatic temperature increase | |
dimensionless number related to activation energy | |
dimensionless heat exchange coefficient | |
dimensionless temperature | |
density, kg/m | |
Subscripts | |
0 | refers to feed |
H | refers to temperature of cooling medium |
References
- Berezowski, M. The application of the parametric continuation method for determining steady state diagrams in chemical engineering. Chem. Eng. Sci. 2010, 65, 5411–5414. [Google Scholar] [CrossRef] [Green Version]
- Guran, L.; Mitrović, Z.D.; Reddy, G.S.M.; Belhenniche, A.; Radenović, S. Applications of a Fixed Point Result for Solving Nonlinear Fractional and Integral Differential Equations. Fractal Fract. 2021, 5, 211. [Google Scholar] [CrossRef]
- Younis, M.; Fabiano, N.; Fadail, Z.M.; Mitrović, Z.D.; Radenović, S. Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences. Vojnoteh. Glas./Mil. Tech. Cour. 2021, 69, 8–30. [Google Scholar] [CrossRef]
- Baayen, J.; Becker, B.; van Heeringen, K.J.; Miltenburg, I.; Piovesan, T.; Rauw, J.; den Toom, M.; VanderWees, J. An overview of continuation methods for non-linear model predictive control of water systems. IFAC-PapersOnLine 2019, 52, 73–80. [Google Scholar] [CrossRef]
- Brown, D.A.; Zingg, D.W. Monolithic homotopy continuation with predictor based on higher derivatives. J. Comput. Appl. Math. 2019, 346, 26–41. [Google Scholar] [CrossRef]
- Gallardo-Alvarado, J. An Application of the Newton–Homotopy Continuation Method for Solving the Forward Kinematic Problem of the 3-<u>R</u>RS Parallel Manipulator. Math. Probl. Eng. 2019, 2019, 3123808. [Google Scholar] [CrossRef]
- Gritton, K.S.; Seader, J.; Lin, W.J. Global homotopy continuation procedures for seeking all roots of a nonlinear equation. Comput. Chem. Eng. 2001, 25, 1003–1019. [Google Scholar] [CrossRef]
- Jiménez-Islas, H.; Martínez-González, G.M.; Navarrete-Bolaños, J.L.; Botello-Álvarez, J.E.; Oliveros-Muñoz, J.M. Nonlinear Homotopic Continuation Methods: A Chemical Engineering Perspective Review. Ind. Eng. Chem. Res. 2013, 52, 14729–14742. [Google Scholar] [CrossRef]
- Jiménez-Islas, H.; Calderón-Ramírez, M.; Martínez-González, G.M.; Calderón-Álvarado, M.P.; Oliveros-Muñoz, J.M. Multiple solutions for steady differential equations via hyperspherical path-tracking of homotopy curves. Comput. Math. Appl. 2020, 79, 2216–2239. [Google Scholar] [CrossRef]
- Pan, B.; Ma, Y.; Ni, Y. A new fractional homotopy method for solving nonlinear optimal control problems. Acta Astronaut. 2019, 161, 12–23. [Google Scholar] [CrossRef]
- Rahimian, S.K.; Jalali, F.; Seader, J.; White, R. A new homotopy for seeking all real roots of a nonlinear equation. Comput. Chem. Eng. 2011, 35, 403–411. [Google Scholar] [CrossRef]
- Słota, D.; Chmielowska, A.; Brociek, R.; Szczygieł, M. Application of the Homotopy Method for Fractional Inverse Stefan Problem. Energies 2020, 13, 5474. [Google Scholar] [CrossRef]
- Wang, Y.; Topputo, F. A Homotopy Method Based on Theory of Functional Connections. 2020. Available online: https://arxiv.org/pdf/1911.04899.pdf (accessed on 27 November 2021).
- Wayburn, T.; Seader, J. Homotopy continuation methods for computer-aided process design. Comput. Chem. Eng. 1987, 11, 7–25. [Google Scholar] [CrossRef]
- Berezowski, M. Determination of catastrophic sets of a tubular chemical reactor by two-parameter continuation method. Int. J. Chem. React. Eng. 2020, 18, 20200135. [Google Scholar] [CrossRef]
- Khan, W.A. Numerical simulation of Chun-Hui He’s iteration method with applications in engineering. Int. J. Numer. Methods Heat Fluid Flow 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Berezowski, M. Method of determination of steady-state diagrams of chemical reactors. Chem. Eng. Sci. 2000, 55, 4291–4295. [Google Scholar] [CrossRef]
- He, J.H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 2004, 156, 527–539. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezowski, M.; Lawnik, M. Homotopic Parametric Continuation Method for Determining Stationary States of Chemical Reactors with Dispersion. Symmetry 2021, 13, 2324. https://doi.org/10.3390/sym13122324
Berezowski M, Lawnik M. Homotopic Parametric Continuation Method for Determining Stationary States of Chemical Reactors with Dispersion. Symmetry. 2021; 13(12):2324. https://doi.org/10.3390/sym13122324
Chicago/Turabian StyleBerezowski, Marek, and Marcin Lawnik. 2021. "Homotopic Parametric Continuation Method for Determining Stationary States of Chemical Reactors with Dispersion" Symmetry 13, no. 12: 2324. https://doi.org/10.3390/sym13122324
APA StyleBerezowski, M., & Lawnik, M. (2021). Homotopic Parametric Continuation Method for Determining Stationary States of Chemical Reactors with Dispersion. Symmetry, 13(12), 2324. https://doi.org/10.3390/sym13122324