Quantum Coherence of Atoms with Dipole–Dipole Interaction and Collective Damping in the Presence of an Optical Field
Abstract
:1. Introduction
2. The Hamiltonian Model and Dynamics
3. Coherence and Total Correlation
4. Result and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715. [Google Scholar] [CrossRef] [Green Version]
- You, W.-L.; Wang, Y.; Yi, T.-C.; Zhang, C.; Oleś Andrzej, M. Quantum coherence in a compass chain under an alternating magnetic field. Phys. Rev. B 2018, 97, 224420. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, H.; Zurek, W.H. Quantum Discord. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Nath Bera, M.; Acín, A.; Kuś, M.; Mitchell, M.; Lewenstein, M. Randomness in quantum mechanics: Philosophy, physics and technology. Rep. Prog. Phys. 2017, 80, 124001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelano, L.K.; Fanchini, F.F.; Berrada, K. Open quantum system description of singlet-triplet qubits in quantum dots. Phys. Rev. B 2016, 94, 235433. [Google Scholar] [CrossRef] [Green Version]
- Berrada, K.; Eleuch, H. Noncommutative deformed cat states under decoherence. Phys. Rev. D 2019, 100, 016020. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 1936, 32, 446–452. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 2015, 6, 6383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlström, O.; Linke, H.; Karlström, G.; Wacker, A. Increasing thermoelectric performance using coherent transport. Phys. Rev. B 2011, 84, 113415. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrada, K. Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 2013, 88, 013817. [Google Scholar] [CrossRef]
- Berrada, K. Quantum metrology with classical light states in non-Markovian lossy channels. J. Opt. Soc. Am. B 2017, 34, 1912–1917. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S.; Ooi, C.H.R. Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 2012, 86, 033823. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalek, S. Quantum Fisher information flow and entanglement in pair coherent states. Opt. Quantum Electron. 2014, 46, 1055–1064. [Google Scholar] [CrossRef]
- Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 2008, 10, 113019. [Google Scholar] [CrossRef]
- Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 2011, 302, 012037. [Google Scholar] [CrossRef]
- Li, C.-M.; Lambert, N.; Chen, Y.-N.; Chen, G.-Y.; Nori, F. Witnessing Quantum Coherence: From solid-state to biological systems. Sci. Rep. 2012, 2, 885. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring quantum coherence with entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Zhou, Y.; Yuan, X.; Ma, X. Operational interpretation of coherence in quantum key distribution. Phys. Rev. A 2019, 99, 062325. [Google Scholar] [CrossRef] [Green Version]
- Lostaglio, M.; Korzekwa, K.; Jennings, D.; Rudolph, T. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 2015, 5, 021001. [Google Scholar] [CrossRef] [Green Version]
- Henao, I.; Serra, R.M. Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E 2018, 97, 062105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Yadin, B.; Girolami, D.; Vedral, V.; Gu, M. Converting coherence to quantum correlations. Phys. Rev. Lett. 2016, 116, 16040. [Google Scholar] [CrossRef]
- Korzekwa, K.; Lostaglio, M.; Oppenheim, J.; Jennings, D. The extraction of work from quantum coherence. New J. Phys. 2016, 18, 023045. [Google Scholar] [CrossRef]
- Silva, I.A.; Souza, A.M.; Bromley, T.R.; Cianciaruso, M.; Marx, R.; Sarthour, R.S.; Oliveira, I.S.; Franco, R.L.; Glaser, S.J.; deAzevedo, E.R.; et al. Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 2016, 117, 160402. [Google Scholar] [CrossRef] [Green Version]
- Mondal, D.; Datta, C.; Sazim, S. Quantum coherence sets the quantum speed limit for mixed states. Phys. Lett. A 2016, 380, 689–695. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zeng, H.S.; Li, Y.; Wang, Q.; Yao, C. Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 2017, 96, 022106. [Google Scholar] [CrossRef]
- Mondal, D.; Kaszlikowski, D. Complementarity relations between quantum steering criteria. Phys. Rev. A 2018, 98, 052330. [Google Scholar] [CrossRef] [Green Version]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zhou, H.; Cao, Z.; Ma, X. Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 2015, 92, 022124. [Google Scholar] [CrossRef] [Green Version]
- Winter, A.; Yang, D. Operational Resource Theory of Coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Man, Z.-X.; Xia, Y.-J.; Franco, R.L. Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 2015, 5, 13843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monras, A.; Checinska, A.; Ekert, A. Witnessing quantum coherence in the presence of noise. New J. Phys. 2014, 16, 063041. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zou, J.; Yu, W.L.; Xu, B.M.; Li, J.G.; Shao, B. Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system’s work capability. Phys. Rev. E 2014, 89, 052132. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Xu, J.; Yao, Y.; Li, Y. Detecting macroscopic quantum coherence with a cavity optomechanical system. Phys. Rev. A 2016, 94, 052314. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, C.; Parthasarathy, M.; Jambulingam, S.; Byrnes, T. Quantum coherence of the Heisenberg spin models with Dzyaloshinsky-Moriya interactions. Sci. Rep. 2017, 7, 13865. [Google Scholar] [CrossRef]
- Opanchuk, B.; Rosales-Zarate, L.; Teh, R.; Reid, M. Quantifying the mesoscopic quantum coherence of approximate noon states and spin-squeezed two-mode bose-einstein condensates. Phys. Rev. A 2016, 94, 062125. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Chen, P.W.; Jambulingam, S.; Byrnes, T.; Ali, M.M. Time dynamics of quantum coherence and monogamy in a non-Markovian environment. Sci. Rep. 2019, 9, 2363. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Ermakov, I.; Byrnes, T. Quantum coherence of planar spin models with dzyaloshinsky-moriya interaction. Phys. Rev. A 2017, 96, 012341. [Google Scholar] [CrossRef] [Green Version]
- Malvezzi, A.L.; Karpat, G.; Çakmak, B.; Fanchini, F.F.; Debarba, T.; Vianna, R.O. Quantum correlations and coherence in spin-1 heisenberg chains. Phys. Rev. B 2016, 93, 184428. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.-L.; Fan, H. Quantum coherence of multiqubit states in correlated noisy channels. Sci. China Phys. Mech. Astron. 2020, 63, 230322. [Google Scholar] [CrossRef] [Green Version]
- Berrada, K.; Fanchini, F.F.; Abdel-Khalek, S. Quantum correlations between each qubit in a two-atom system and the environment in terms of interatomic distance. Phy. Rev. A 2012, 85, 052315. [Google Scholar] [CrossRef] [Green Version]
- Tahira, R.; Ikram, M.; Zubairy, M.S. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. Opt. Commun. 2011, 284, 3643–3648. [Google Scholar] [CrossRef]
- Hu, M.L.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.R.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762, 1–100. [Google Scholar] [CrossRef] [Green Version]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing Nonclassical Correlations via Local Quantum Uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, M.; Berrada, K.; Abdel-Khalek, S.; Eleuch, H. Quantum Coherence of Atoms with Dipole–Dipole Interaction and Collective Damping in the Presence of an Optical Field. Symmetry 2021, 13, 2327. https://doi.org/10.3390/sym13122327
Algarni M, Berrada K, Abdel-Khalek S, Eleuch H. Quantum Coherence of Atoms with Dipole–Dipole Interaction and Collective Damping in the Presence of an Optical Field. Symmetry. 2021; 13(12):2327. https://doi.org/10.3390/sym13122327
Chicago/Turabian StyleAlgarni, Mariam, Kamal Berrada, Sayed Abdel-Khalek, and Hichem Eleuch. 2021. "Quantum Coherence of Atoms with Dipole–Dipole Interaction and Collective Damping in the Presence of an Optical Field" Symmetry 13, no. 12: 2327. https://doi.org/10.3390/sym13122327
APA StyleAlgarni, M., Berrada, K., Abdel-Khalek, S., & Eleuch, H. (2021). Quantum Coherence of Atoms with Dipole–Dipole Interaction and Collective Damping in the Presence of an Optical Field. Symmetry, 13(12), 2327. https://doi.org/10.3390/sym13122327