Next Article in Journal
Circuit Topology for Bottom-Up Engineering of Molecular Knots
Next Article in Special Issue
A Generalized Class of Functions Defined by the q-Difference Operator
Previous Article in Journal
Schur-Convexity for Elementary Symmetric Composite Functions and Their Inverse Problems and Applications
Previous Article in Special Issue
Approximations of Symmetric Functions on Banach Spaces with Symmetric Bases
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings

by
Muhammad Bilal Khan
1,
Pshtiwan Othman Mohammed
2,*,
José António Tenreiro Machado
3 and
Juan L. G. Guirao
4,5,*
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
3
Department of Electrical Engineering, Institution of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
4
Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina, 30203 Cartagena, Spain
5
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2021, 13(12), 2352; https://doi.org/10.3390/sym13122352
Submission received: 18 October 2021 / Revised: 10 November 2021 / Accepted: 1 December 2021 / Published: 7 December 2021
(This article belongs to the Special Issue Symmetry in Functional Equations and Analytic Inequalities II)

Abstract

:
It is a well-known fact that convex and non-convex fuzzy mappings play a critical role in the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity also plays a significant role in the subject of inequalities. The concepts of convexity and symmetry have a tight connection. We may use whatever we learn from both the concepts, owing to the significant correlation that has developed between both in recent years. In this paper, we introduce a new class of harmonically convex fuzzy-interval-valued functions which is known as harmonically h-convex fuzzy-interval-valued functions (abbreviated as harmonically h-convex F-I-V-Fs) by means of fuzzy order relation. This fuzzy order relation is defined level-wise through Kulisch–Miranker order relation defined on interval space. Some properties of this class are investigated. BY using fuzzy order relation and h-convex F-I-V-Fs, Hermite–Hadamard type inequalities for harmonically are developed via fuzzy Riemann integral. We have also obtained some new inequalities for the product of harmonically h-convex F-I-V-Fs. Moreover, we establish Hermite–Hadamard–Fej’er inequality for harmonically h-convex F-I-V-Fs via fuzzy Riemann integral. These outcomes are a generalization of a number of previously known results, as well as many new outcomes can be deduced as a result of appropriate parameter θ and real valued function selections. For the validation of the main results, we have added some nontrivial examples. We hope that the concepts and techniques of this study may open new directions for research.

1. Introduction

Convex analysis has contributed significantly to the advancement of applied and pure research. The study and distinction between several directions of the classical notion of convexity has received considerable interest in recent decades. A variety of convex function extensions and generalizations have recently been discovered, see [1,2,3,4,5] and the references therein for more information. In the classical approach, a real valued function Ψ : K is called convex if
Ψ ( ( 1 ξ ) w + ξ y ) ( 1 ξ ) Ψ ( w ) + ξ Ψ ( y ) ,
for all w ,   y K ,   ξ [ 0 ,   1 ] .
The concept of convexity in the context of integral problems is a fascinating field of study. As a result, several inequalities have been proposed as convex function applications. Among these, the Hermite–Hadamard inequality (𝐻·𝐻 inequality) is a fascinating convex analytic result. The 𝐻·𝐻 inequality [6,7] is defined as follows for the convex function Ψ : K on an interval K = [ u ,   ν ] :
Ψ ( u + ν 2 ) 1 ν u   u ν Ψ ( w ) d w Ψ ( u ) + Ψ ( ν ) 2 ,
for all u ,   ν K .
Various applications have been discovered resulting from a geometrical interpretation; see for example [8,9,10]. In several works [11,12,13], we can find analysis on the generalization of this disparity. Set-valued analysis is a generalization of the interval analysis. The topic arose as a response to the interval uncertainty that can be found in various computational or mathematical models of deterministic real-world problems.
The Archimedes method, which is used to calculate the circumference of a circle, is one of the earliest examples of an interval enclosure, see [14]. In 1966, Moore [15] published the first manuscript on interval analysis. Stimulated by this work the theory and application of interval arithmetic’s started to be further investigated. We can mention applications such as robotics, computer graphics, chemical and structural engineering, economics, behavioral ecology, constraint fulfillment, signal processing and global optimization, neural network output optimization, that have explored the use of interval analysis [16,17].
Researchers have looked at various major inequalities as a result of the aforementioned applications, including the Jensen’s inequality, 𝐻·𝐻 inequality, and Ostrowski inequality, among others. Chalco-Cano et al. [18,19] used the Hukuhara derivative for interval-valued functions to generate Ostrowski type inequalities. The Minkowski and Beckenbach inequalities were established by Romn-Flores et al. [20], see also [20,21,22] for additional inequalities. The 𝐻·𝐻 inequality was proposed by Sadowska [23]. Other studies can be found in [23,24].
Zhao et al. used extended fractional integrals to prove the 𝐻·𝐻 inequality for interval-valued approximately h-convex functions in [25]. Kamran et al. [26] developed the 𝐻·𝐻 inequality by means of the notion of interval-valued generalized p-convex functions. Khan et al. introduced new classes of convex and generalized convex F-I-V-F, and derived fractional 𝐻·𝐻 type and 𝐻·𝐻 type inequalities for convex F-I-V-F [27], h -convex F-I-V-F [28], ( h 1 ,   h 2 ) -connvex F-I-V-F [29], ( h 1 ,   h 2 ) -preinvex F-I-V-F [30], log-h-convex F-I-V-Fs [31], log-s-convex F-I-V-Fs in the second sense [32], and the references therein. We refer the readers for further analysis to literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein.
In this paper, we established the Hermite–Hadamard type inequality for harmonically h -convex F-I-V-Fs via fuzzy Riemann integral. We also established Hermite–Hadamard Fej’er inequality via the fuzzy Riemann integral. Moreover, we have discussed some new and classical inequalities as exceptional cases.

2. Preliminary Concepts

In this section, we recall some basic preliminary notions, definitions, and results.
We define interval as,
[ ω * ,   ω * ] = { w : ω * w   ω *   and   ω * , ω *   } , where ω *   ω * .
We write len [ ω * ,   ω * ] = ω * ω * , and if len [ ω * ,   ω * ] = 0 , then [ ω * ,   ω * ] is called degenerate. Hereafter, all intervals will be non-degenerate. The collection of all closed and bounded intervals of is defined as K C = { [ ω * ,   ω * ] : ω * ,   ω * / and / ω * ω * } . If ω * 0 , then [ ω * ,   ω * ] is called positive interval. The set of all positive interval is denoted by K C + and defined as K C + = { [ ω * ,   ω * ] : [ ω * ,   ω * ] K C   and   ω * 0 } .
Now we look at some of the properties of intervals using arithmetic operations. Let [ ϱ * ,   ϱ * ] ,   [ 𝓈 * ,   𝓈 * ] K C and ρ . Then, we have
[ ϱ * ,   ϱ * ] + [ 𝓈 * ,   𝓈 * ] = [ ϱ * + 𝓈 * ,   ϱ * + 𝓈 * ] ,
[ ϱ * ,   ϱ * ] × [ 𝓈 * ,   𝓈 * ] = [ m i n { ϱ * 𝓈 * ,   ϱ * 𝓈 * ,   ϱ * 𝓈 * ,   ϱ * 𝓈 * } , m a x { ϱ * 𝓈 * ,   ϱ * 𝓈 * ,   ϱ * 𝓈 * ,   ϱ * 𝓈 * } ]
ρ [ ϱ * ,   ϱ * ] = { [ ρ ϱ * , ρ ϱ * ]   if   ρ > 0 , { 0 }                       if   ρ = 0 [ ρ ϱ * , ρ ϱ * ]   if   ρ < 0 .
For [ ϱ * ,   ϱ * ] ,   [ 𝓈 * ,   𝓈 * ] K C , the inclusion “⊆” is defined by
[ ϱ * ,   ϱ * ] [ 𝓈 * ,   𝓈 * ] , if and only if 𝓈 * ϱ * , ϱ * 𝓈 * .
Remark 1.
The relation  I is defined on  K C  by
[ ϱ * ,   ϱ * ] I [ 𝓈 * ,   𝓈 * ]   if   and   only   if   ϱ * 𝓈 * ,   ϱ * 𝓈 * ,
for all  [ ϱ * ,   ϱ * ] ,   [ 𝓈 * ,   𝓈 * ] K C , and it is an order relation, see [45].
Moore [24] initially proposed the concept of Riemann integral for I-V-F, which is defined as follows:
Theorem 1
[14]. If  Ψ : [ u , ν ] K C is an I-V-F such that  Ψ ( w ) = [ Ψ * ( w ) ,   Ψ * ( w ) ] , then  Ψ  is Riemann integrable over  [ u , ν ]  if and only if, Ψ *  and  Ψ *  are both Riemann integrable over  [ u , ν ]  such that
( I R ) u ν Ψ ( w ) d w = [ ( R ) u ν Ψ * ( w ) d w ,   ( R ) u ν Ψ * ( w ) d w ] .  
Let be the set of real numbers. A mapping ζ : [ 0 , 1 ] called the membership function distinguishes a fuzzy subset set A of . This representation is found to be acceptable in this study. The notation F ( ) also stands for the collection of all fuzzy subsets of .
A real fuzzy interval ζ is a fuzzy set in with the following properties:
(1)
ζ is normal, i.e., there exists w such that ζ ( w ) = 1 ;
(2)
ζ is upper semi continuous, i.e., for given w , for every w there exists ε > 0 , there exists δ > 0 such that ζ ( w ) ζ ( y ) < ε for all y with | w y | < δ .
(3)
ζ is fuzzy convex, i.e., ζ ( ( 1 ξ ) w + ξ y ) m i n ( ζ ( w ) ,   ζ ( y ) ) ,     w , y and ξ [ 0 , 1 ] ;
(4)
ζ is compactly supported, i.e., c l { w |   ζ ( w ) 0 } is compact.
The collection of all real fuzzy intervals is denoted by F 0 .
For θ [ 0 , 1 ] , θ -levels [ ζ ] θ is a nonempty compact convex set of . This is represented by
[ ζ ] θ = { w |   ζ ( w ) θ } ,  
from these definitions, we have
[ ζ ] θ = [ ζ * ( θ ) ,   ζ * ( θ ) ] ,
where
ζ * ( θ ) = i n f { w |   ζ ( w ) θ } ,
ζ * ( θ ) = s u p { w |   ζ ( w ) θ } .
Thus, a real fuzzy interval ζ can be identified by a parametrized triples
{ ( ζ * ( θ ) , ζ * ( θ ) , θ ) : θ [ 0 ,   1 ] } .
The two end point functions, ζ * ( θ ) and ζ * ( θ ) , are used to characterize a real fuzzy interval.
Proposition 1
[42]. Let ζ , Θ F 0 , the fuzzy order relation   given on  F 0  by
ζ Θ ,   if   and   only   if ,   [ ζ ] θ I [ Θ ] θ   for   all   θ ( 0 ,   1 ] ,
is a partial order relation.
We will now look at some of the properties of fuzzy intervals using arithmetic operations. Let ζ , Θ F 0 and ρ . Then, we have
[ ζ + ˜ Θ ] θ = [ ζ ] θ + [ Θ ] θ ,
[ ζ × ˜ Θ ] θ = [ ζ ] θ × [   Θ ] θ ,
[ ρ ζ ] θ = ρ [ ζ ] θ
For ψ F 0 , such that ζ = Θ + ˜ ψ , we have the existence of the Hukuhara difference of ζ and Θ , which we call the H-difference of ζ and Θ , and is denoted by ζ ˜ Θ . The H-difference exists, then
( ψ ) * ( θ ) = ( ζ ˜ Θ ) * ( θ ) = ζ * ( θ ) Θ * ( θ ) ,  
( ψ ) * ( θ ) = ( ζ ˜ Θ ) * ( θ ) = ζ * ( θ ) Θ * ( θ ) .
Definition 1
[42]. A fuzzy-interval-valued map   Ψ ˜ : K F 0 is called F-I-V-F. For each  θ ( 0 ,   1 ] ,  whose  θ -levels define the family of I-V-Fs  Ψ θ : K K C  are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w K .  Here, for each  θ ( 0 ,   1 ] ,  the end point real functions  Ψ * ( . , θ ) ,   Ψ * ( . , θ ) : K  are called lower and upper functions of  Ψ ˜ ( w ) .
The following conclusions can be drawn from the literature [42,43,44]:
Definition 2.
Let  Ψ ˜ : [ u ,   ν ] F 0 be an F-I-V-F. Then, fuzzy integral of Ψ ˜ over  [ u ,   ν ] ,  denoted by  ( F R ) u ν Ψ ˜ ( w ) d w , is given level-wise by
[ ( F R ) u ν Ψ ˜ ( w ) d w ]   θ = ( I R ) u ν Ψ θ ( w ) d w = { u ν Ψ ( w , θ ) d w : Ψ ( w , θ ) ( [ u ,   ν ] ,   θ ) } ,
for all  θ ( 0 ,   1 ] ,  where    ( [ u ,   ν ] ,   θ )  denotes the collection of Riemannian integrable functions of I-V-Fs. The F-I-V-F  Ψ ˜  is  F R -integrable over  [ u ,   ν ] if ( F R ) u ν Ψ ˜ ( w ) d w F 0 .  Note that, if Ψ * ( w , θ ) ,   Ψ * ( w , θ ) are Lebesgue-integrable, then  Ψ  is fuzzy Aumann-integrable function over  [ u ,   ν ] , see [21,27,31].
Theorem 2.
Let Ψ ˜ : [ u ,   ν ] F 0 be a F-I-V-F, whose θ -levels define the family of I-V-Fs  Ψ θ : [ u ,   ν ] K C  are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w [ u ,   ν ]  and for all θ ( 0 ,   1 ] . Then, Ψ ˜  is  F R -integrable over  [ u ,   ν ]  if and only if,  Ψ * ( w , θ ) and Ψ * ( w , θ )  are both R-integrable over  [ u ,   ν ] . Moreover, if Ψ ˜  is  F R -integrable over [ u ,   ν ] , then
[ ( F R ) u ν Ψ ˜ ( w ) d w ] θ = [ ( R ) u ν Ψ * ( w , θ ) d w ,   ( R ) u ν Ψ * ( w , θ ) d w ] = ( I R ) u ν Ψ θ ( w ) d w ,
for all θ ( 0 ,   1 ] . For all θ ( 0 ,   1 ] ,     ( [ u ,   ν ] ,   θ ) denotes the collection of all F R -integrable F-I-V-Fs over [ u ,   ν ] .
Definition 3
[46]. A set K = [ u ,   υ ] + = ( 0 , ) is said to be convex set, if, for all  w ,   y K ,   ξ [ 0 ,   1 ] , we have
w y ξ w + ( 1 ξ ) y K .
Definition 4
[46]. The relation Ψ : [ u ,   υ ] + is called a harmonically convex function on [ u ,   υ ] if
Ψ ( w y ξ w + ( 1 ξ ) y ) ( 1 ξ ) Ψ ( w ) + ξ Ψ ( y ) ,
for all w ,   y [ u ,   υ ] ,   ξ [ 0 ,   1 ] , where  Ψ ( w ) 0  for all  w [ u ,   υ ] .  If expression (11) is reversed, then  Ψ  is called harmonically concave F-I-V-F on  [ u ,   υ ] , such that
Ψ ( w y ξ w + ( 1 ξ ) y ) ( 1 ξ ) Ψ ( w ) + ξ Ψ ( y ) .
Definition 5
[47]. The positive real-valued function Ψ : [ u ,   υ ] + is called harmonically h -convex function on [ u ,   υ ] if
Ψ ( w y ξ w + ( 1 ξ ) y ) h ( 1 ξ ) Ψ ( w ) + h ( ξ ) Ψ ( y ) ,
for all w ,   y [ u ,   υ ] ,   ξ [ 0 ,   1 ] , where  Ψ ( w ) 0  for all  w [ u ,   υ ]  and  h : [ 0 , 1 ] [ u ,   υ ] +  such that  h 0 . If expression (12) is reversed, then  Ψ  is called harmonically  h -concave function on  [ u ,   υ ] , such that
Ψ ( w y ξ w + ( 1 ξ ) y ) h ( 1 ξ ) Ψ ( w ) + h ( ξ ) Ψ ( y ) .
The set of all harmonically h -convex (harmonically h -concave) functions is denoted by
H S X ( [ u ,   υ ] ,   + , h ) ( H S V ( [ u ,   υ ] ,   + ,   h ) ) .
Definition 6
[28]. The F-I-V-F Ψ ˜ : [ u ,   υ ] F 0 is called h -convex F-I-V-F on [ u ,   υ ] if
Ψ ˜ ( ( 1 ξ ) w + ξ y ) h ( 1 ξ ) Ψ ˜ ( w ) + ˜ h ( ξ ) Ψ ˜ ( y ) ,
for all w ,   y [ u ,   υ ] ,   ξ [ 0 ,   1 ] , where Ψ ( w ) 0  for all  w [ u ,   υ ]  and  h : [ 0 ,   1 ] [ u ,   υ ] + , such that  h 0 . If expression (13) is reversed, then  Ψ ˜  is called h -concave F-I-V-F on  [ u ,   υ ] . The set of all  h -convex ( h -concave) F-I-V-F is denoted by
F S X ( [ u ,   υ ] ,   F 0 , h ) ( F S V ( [ u ,   υ ] ,   F 0 ,   h ) ) .
Definition 7
[33]. The F-I-V-F Ψ ˜ : [ u ,   υ ] F 0 is called harmonically convex F-I-V-F on [ u ,   υ ] if
Ψ ˜ ( w y ξ w + ( 1 ξ ) y ) ( 1 ξ ) Ψ ˜ ( w ) + ˜ ξ Ψ ˜ ( y ) ,
for all w ,   y [ u ,   υ ] ,   ξ [ 0 ,   1 ] , where Ψ ˜ ( w ) 0 ˜ , for all w [ u ,   υ ] .  If expression (14) is reversed, then  Ψ ˜  is called harmonically concave F-I-V-F on  [ u ,   υ ] .
Definition 8.
The F-I-V-F Ψ ˜ : [ u ,   υ ] F 0 is called harmonically  h -convex F-I-V-F on [ u ,   υ ] if
Ψ ˜ ( w y ξ w + ( 1 ξ ) y ) h ( 1 ξ ) Ψ ˜ ( w ) + ˜ h ( ξ ) Ψ ˜ ( y ) ,
for all w ,   y [ u ,   υ ] ,   ξ [ 0 ,   1 ] , where  Ψ ˜ ( w ) 0 ˜ , for all  w [ u ,   υ ]  and  h : [ 0 ,   1 ] [ u ,   υ ] +  such that  h 0 . If expression (15) is reversed, then  Ψ ˜  is called harmonically h -concave F-I-V-F on  [ u ,   υ ] . The set of all harmonically h -convex (harmonically h -concave) F-I-V-F is denoted by
H F S X ( [ u ,   υ ] ,   F 0 ,   h ) ( H F S V ( [ u ,   υ ] ,   F 0 ,   h ) ) .
Theorem 3.
Let [ u ,   υ ] be harmonically convex set, and let  Ψ ˜ : [ u ,   υ ] F C ( )  be a F-I-V-F, whose  θ -levels define the family of I-V-Fs  Ψ θ : [ u ,   υ ] K C + K C  are given by
Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ] ,     w [ u ,   υ ] .
for all  w [ u ,   υ ] , θ [ 0 ,   1 ] . Then, Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) ,  if and only if, for all  [ 0 ,   1 ] ,   Ψ * ( w ,   θ ) , Ψ * ( w ,   θ ) H S X ( [ u ,   υ ] ,   + , h ) .
Proof. 
The proof is similar to the proof of Theorem 2.12, see [29]. □
Example 1.
Let us consider the F-I-V-Fs Ψ ˜ : [ 0 ,   2 ] F C ( ) defined by,
Ψ ˜ ( w ) ( ) = { w   [ 0 ,   w ] 2 2 w   ( w ,   2 w ]   0   otherwis .
Then, for each θ [ 0 ,   1 ] , we have Ψ θ ( w ) = [ θ w , ( 2 θ ) w ] . Since Ψ * ( w ,   θ ) , Ψ * ( w ,   θ )   H S X ( [ u ,   υ ] ,   + , h ) , with h ( ξ ) = ξ , for each θ [ 0 ,   1 ] , then Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) .
Remark 2.
If  h ( ξ ) = ξ , then Definition 8 reduces to the Definition 7.
If Ψ * ( w ,   α ) = Ψ * ( w ,   α ) with α = 1 , then the harmonically h -convex F-I-V-F reduces to the classical harmonically h -convex function, see [47].
If Ψ * ( w ,   α ) = Ψ * ( w ,   α ) with α = 1 and h ( ξ ) = ξ s with s ( 0 ,   1 ) , then the harmonically h -convex F-I-V-F reduces to the classical harmonically s -convex function, see [47].
If Ψ * ( w ,   α ) = Ψ * ( w ,   α ) with α = 1 and h ( ξ ) = ξ , then the harmonically h -convex F-I-V-F reduces to the classical harmonically convex function, see [46].
If Ψ * ( w ,   α ) = Ψ * ( w ,   α ) with α = 1 and h ( ξ ) = 1 , then the harmonically h -convex F-I-V-F reduces to the classical harmonically P -function, see [47].

3. Fuzzy-Interval Hermite-Hadamard Inequalities

In this section, we prove two types of inequalities. First one is 𝐻⋅𝐻 and their variant forms, and the second one is 𝐻⋅𝐻 Fejér inequalities for convex F-I-V-Fs where the integrands are F-I-V-Fs.
Theorem 4.
Let Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) , whose  θ -levels define the family of I-V-Fs Ψ θ : [ u ,   υ ] K C + that are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w [ u ,   υ ] , θ [ 0 ,   1 ] . If h ( 1 2 ) 0 and  Ψ ˜ ( [ u ,   υ ] ,   θ ) , so that
1 2 h ( 1 2 ) Ψ ˜ ( 2 u υ u + υ )   u υ υ u   u υ Ψ ˜ ( w ) w 2 d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] 0 1 h ( ξ ) d ξ .  
If Ψ ˜ H F S V ( [ u ,   υ ] ,   F 0 ,   h ) , then
1 2 h ( 1 2 ) Ψ ˜ ( 2 u υ u + υ )   u υ υ u   u υ Ψ ˜ ( w ) w 2 d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] 0 1 h ( ξ ) d ξ .  
Proof. 
Let Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) . Then, by hypothesis, we can write
1 h ( 1 2 ) Ψ ˜ ( 2 u υ u + υ ) Ψ ˜ ( u υ ξ u + ( 1 ξ ) υ ) + ˜ Ψ ˜ ( u υ ( 1 ξ ) u + ξ υ ) .
Therefore, for each θ [ 0 ,   1 ] , we have
1 h ( 1 2 ) Ψ * ( 2 u υ u + υ ,   θ ) Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ,   1 h ( 1 2 ) Ψ * ( 2 u υ u + υ ,   θ ) Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ( 1 ξ ) u + ξ υ , θ ) .
Then
1 h ( 1 2 ) 0 1 Ψ * ( 2 u υ u + υ ,   θ ) d ξ 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ , θ ) d ξ + 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) d ξ , 1 h ( 1 2 ) 0 1 Ψ * ( 2 u υ u + υ ,   θ ) d ξ 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ , θ ) d ξ + 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) d ξ .
It follows that
1 2 h ( 1 2 ) Ψ * ( 2 u υ u + υ ,   θ )   u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w , 1 2 h ( 1 2 ) Ψ * ( 2 u υ u + υ ,   θ )   u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w .
That is
1 2 h ( 1 2 ) [ Ψ * ( 2 u υ u + υ ,   θ ) ,   Ψ * ( 2 u υ u + υ ,   θ ) ] I   u υ υ u [ u υ Ψ * ( w ,   θ ) w 2 d w ,   u υ Ψ * ( w ,   θ ) w 2 d w ] .
Thus,
1 2 h ( 1 2 )   Ψ ˜ ( 2 u υ u + υ )   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w .
In a similar way as above, we have
  u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] 0 1 h ( ξ ) d ξ .
Combining (19) and (20), we have
1 2 h ( 1 2 ) Ψ ˜ ( 2 u υ u + υ )   u υ υ u   u υ Ψ ˜ ( w ) w 2 d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] 0 1 h ( ξ ) d ξ .
Hence, we obtain the required result. □
Example 2.
We consider h ( ξ ) = ξ , for  ξ [ 0 ,   1 ] , and the FIVFs  Ψ ˜ : [ 0 ,   2 ] F C ( ) ,  as in Example 1. Then, for each  θ [ 0 ,   1 ] ,  we have  Ψ θ ( w ) = [ θ w ,   ( 2 θ ) w ]  is a harmonically  h -convex FIVFs. Since, Ψ * ( w , θ ) = θ w ,   Ψ * ( w ,   θ ) = ( 2 θ ) w . We now compute the following:
1 2 h ( 1 2 )   Ψ * ( 2 u υ u + υ ,   θ )   u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] 0 1 h ( ξ ) d ξ .
1 2 h ( 1 2 )   Ψ * ( 2 u υ u + υ ,   θ ) = Ψ * ( 0 ,   θ ) = 0 ,
u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w = 0 2   0 2 θ w w 2 d w = 0 ,
[ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] 0 1 h ( ξ ) d ξ = θ 2 ,
for all  θ [ 0 ,   1 ] .  That means
0 0 θ 2 .
Similarly, it can be easily shown that
1 2 h ( 1 2 )   Ψ * ( 2 u υ u + υ ,   θ )   u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] 0 1 h ( ξ ) d ξ . for all θ [ 0 ,   1 ] , such that
1 2 h ( 1 2 )   Ψ * ( 2 u υ u + υ ,   θ ) = Ψ * ( 0 ,   θ ) = 0 ,
  u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w = 0 2   0 2 ( 2 θ ) w w 2 d w = 0 ,
[ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] 0 1 h ( ξ ) d ξ = ( 2 θ ) 2 .
From which, we have
0 0 ( 2 θ ) 2 ,
that is
[ 0 ,   0 ] I [ 0 ,   0 ] I 1 2 [ θ ,   ( 2 θ ) ] , for all θ [ 0 ,   1 ] .
Hence,
1 2 h ( 1 2 ) Ψ ˜ ( 2 u υ u + υ )   u υ υ u   u υ Ψ ˜ ( w ) w 2 d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] 0 1 h ( ξ ) d ξ .
Remark 3.
If  h ( ξ ) = ξ s , where  s ( 0 , 1 ) , then Theorem 4 reduces to the result for the harmonically s -convex fuzzy-interval-valued function, see [28]:
2 s 1   Ψ ˜ ( 2 u υ u + υ )   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w 1 s + 1 [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] .
If h ( ξ ) = ξ , then Theorem 4 reduces to the result for the harmonically convex fuzzy-interval-valued function, see [28]:
Ψ ˜ ( 2 u υ u + υ )   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) 2 .
If h ( ξ ) 1 , then Theorem 4 reduces to the result for the harmonically P fuzzy-interval-valued function, see [28]:
1 2 Ψ ˜ ( 2 u υ u + υ )   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) .
If Ψ * ( w ,   θ ) = Ψ * ( w ,   θ ) with θ = 1 , then Theorem 4 reduces to the result for the classical harmonically h -convex function, see [47]:
1 2 h ( 1 2 )   Ψ ( 2 u υ u + υ )   u υ υ u   ( R ) u υ Ψ ( w ) w 2 d w [ Ψ ( u ) + Ψ ( υ ) ] 0 1 h ( ξ ) d ξ .
If Ψ * ( w ,   θ ) = Ψ * ( w ,   θ ) with θ = 1 and h ( ξ ) = ξ s , then Theorem 4 reduces to the result for the classical harmonically s -convex function, see [47]:
2 s 1   Ψ ( 2 u υ u + υ )   u υ υ u   ( R ) u υ Ψ ( w ) w 2 d w 1 s + 1 [ Ψ ( u ) + Ψ ( υ ) ] .
If Ψ * ( w ,   θ ) = Ψ * ( w ,   θ ) with θ = 1 and h ( ξ ) = ξ , then Theorem 4 reduces to the result for the classical harmonically convex function, see [46]:
Ψ ( 2 u υ u + υ )   u υ υ u   ( R ) u υ Ψ ( w ) w 2 d w Ψ ( u ) + Ψ ( υ ) 2 .
If Ψ * ( w ,   θ ) = Ψ * ( w ,   θ ) with θ = 1 and h ( ξ ) 1 , then Theorem 4 reduces to the result for the classical harmonically P function, see [47]:
1 2 Ψ ( 2 u υ u + υ )   u υ υ u   ( R ) u υ Ψ ( w ) w 2 d w Ψ ( u ) + Ψ ( υ ) .
Theorem 5.
Let Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) with  h ( 1 2 ) 0 , whose θ -levels define the family of I-V-Fs  Ψ θ : [ u ,   υ ] K C +  that are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w [ u ,   υ ] , θ [ 0 ,   1 ] . If  Ψ ˜   ( [ u ,   υ ] ,   θ ) , so that
1 4 [ h ( 1 2 ) ] 2   Ψ ˜ ( 2 u υ u + υ ) 2   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w 1 [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] [ 1 2 + h ( 1 2 ) ] 0 1 h ( ξ ) d ξ ,
where
1 = [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) 2   + ˜   Ψ ˜ ( 2 u υ u + υ ) ] 0 1 h ( ξ ) d ξ ,
2 = 1 4 h ( 1 2 ) [ Ψ ˜ ( 4 u υ u + 3 υ )   + ˜   Ψ ˜ ( 4 u υ 3 u + υ ) ] ,
and 1 = [ 1 * , 1 * ] , 2 = [ 2 * , 2 * ] .
If Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) , then inequality (21) is reversed.
Proof. 
Take [ u ,   2 u υ u + υ ] , so that
1 h ( 1 2 ) Ψ ˜ ( u 4 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ + u 4 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ ) Ψ ˜ ( u 2 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ   ) + ˜ Ψ ˜ ( u 2 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ ) .
Therefore, for every θ [ 0 ,   1 ] , yields
1 h ( 1 2 ) Ψ * ( u 4 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ + u 4 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ ,   θ ) Ψ * ( u 2 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ ,   θ ) + Ψ * ( u 2 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ ,   θ ) , 1 h ( 1 2 ) Ψ * ( u 4 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ + u 4 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ ,   θ ) Ψ * ( u 2 u υ u + υ ξ u + ( 1 ξ ) 2 u υ u + υ ,   θ ) + Ψ * ( u 2 u υ u + υ ( 1 ξ ) u + ξ 2 u υ u + υ , θ ) .
In consequence, we obtain
1 4 h ( 1 2 ) Ψ * ( 4 u υ u + 3 υ ,   θ )   u υ υ u   u 2 u υ u + υ Ψ * ( w ,   θ ) w 2 d w , 1 4 h ( 1 2 ) Ψ * ( 4 u υ u + 3 υ ,   θ )   u υ υ u   u 2 u υ u + υ Ψ * ( w ,   θ ) w 2 d w .
That is
1 4 h ( 1 2 ) [ Ψ * ( 4 u υ u + 3 υ ,   θ ) ,   Ψ * ( 4 u υ u + 3 υ ,   θ ) ] I   u υ υ u [ u 2 u υ u + υ Ψ * ( w ,   θ ) w 2 d w ,   u 2 u υ u + υ Ψ * ( w ,   θ ) w 2 d w ] .
It follows that
1 4 h ( 1 2 ) Ψ ˜ ( 4 u υ u + 3 υ )   u υ υ u   u 2 u υ u + υ Ψ ˜ ( w ) w 2 d w .
In a similar way as above, we have
1 4 h ( 1 2 ) Ψ ˜ ( 4 u υ 3 u + υ )   u υ υ u   2 u υ u + υ υ Ψ ˜ ( w ) w 2 d w .
Combining (22) and (23), we can write
1 4 h ( 1 2 ) [ Ψ ˜ ( 4 u υ u + 3 υ ) + ˜ Ψ ˜ ( 4 u υ 3 u + υ ) ]   u υ υ u   u υ Ψ ˜ ( w ) w 2 d w .
Therefore, for every θ [ 0 ,   1 ] , by using Theorem 4, we have
1 4 [ h ( 1 2 ) ] 2 Ψ * ( 2 u υ u + υ ,   θ ) 1 4 [ h ( 1 2 ) ] 2 [ h ( 1 2 ) Ψ * ( 4 u υ u + 3 υ ,   θ ) + h ( 1 2 ) Ψ * ( 4 u υ 3 u + υ ,   θ ) ] , 1 4 [ h ( 1 2 ) ] 2 Ψ * ( 2 u υ u + υ ,   θ ) 1 4 [ h ( 1 2 ) ] 2 [ h ( 1 2 ) Ψ * ( 4 u υ u + 3 υ ,   θ ) + h ( 1 2 ) Ψ * ( 4 u υ 3 u + υ ,   θ ) ] ,
= 2 * , = 2 * ,
  u υ υ u   u   υ Ψ * ( w ,   θ ) w 2 d w ,     u υ υ u   u υ Ψ * ( w ,   θ ) w 2 d w ,
[ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) 2 + Ψ * ( 2 u υ u + υ ,   θ ) ] 0 1 h ( ξ ) d ξ ,   [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) 2 + Ψ * ( 2 u υ u + υ ,   θ ) ] 0 1 h ( ξ ) d ξ ,
= 1 * , = 1 * ,
[ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) 2 + h ( 1 2 ) ( Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ) ] 0 1 h ( ξ ) d ξ ,   [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) 2 + h ( 1 2 ) ( Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ) ] 0 1 h ( ξ ) d ξ ,
= [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] [ 1 2 + h ( 1 2 ) ] 0 1 h ( ξ ) d ξ ,   = [ Ψ * ( u ,   θ ) + Ψ * ( υ ,   θ ) ] [ 1 2 + h ( 1 2 ) ] 0 1 h ( ξ ) d ξ ,
that is
1 4 [ h ( 1 2 ) ] 2   Ψ ˜ ( 2 u υ u + υ ) 2   u υ υ u   ( F R ) u υ Ψ ˜ ( w ) w 2 d w 1 [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( υ ) ] [ 1 2 + h ( 1 2 ) ] 0 1 h ( ξ ) d ξ .
Theorem 6.
Let Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h 1 ) and 𝒫 ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h 2 ) , whose  θ -levels Ψ θ 𝒫 θ : [ u ,   υ ] K C + are defined by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  and 𝒫 θ ( w ) = [ 𝒫 * ( w , θ ) ,   𝒫 * ( w , θ ) ] for all  w [ u ,   υ ] , θ [ 0 ,   1 ] , respectively. If Ψ ˜ × ˜ 𝒫 ˜ ( [ u ,   υ ] ,   θ ) , then
u υ υ u   ( F R ) u υ   Ψ ˜ ( w ) × ˜ 𝒫 ˜ ( w ) w 2 d w ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ + ˜   N ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ ,
where ˜ ( u ,   υ ) = Ψ ˜ ( u ) × ˜ 𝒫 ˜ ( u ) + ˜ Ψ ˜ ( υ ) × ˜ 𝒫 ˜ ( υ ) , N ˜ ( u ,   υ ) = Ψ ˜ ( u ) × ˜ 𝒫 ˜ ( u ) + ˜ Ψ ˜ ( υ ) × ˜ 𝒫 ˜ ( υ ) , θ ( u , υ ) = [ * ( ( u , υ ) ,   θ ) ,   * ( ( u , υ ) ,   θ ) ]  and  N θ ( u , υ ) = [ N * ( ( u , υ ) ,   θ ) ,   N * ( ( u , υ ) ,   θ ) ] .
Proof. 
Since Ψ ˜ and 𝒫 ˜ are harmonically h 1 and h 2 -convex F-I-V-Fs then, for each θ [ 0 ,   1 ] we have
Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ,   Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ,  
and
𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) h 2 ( ξ ) 𝒫 * ( u ,   θ ) + h 2 ( 1 ξ ) 𝒫 * ( υ ,   θ ) ,   𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) h 2 ( ξ ) 𝒫 * ( u ,   θ ) + h 2 ( 1 ξ ) 𝒫 * ( υ ,   θ ) .
From the definition of harmonically h -convexity of F-I-V-Fs it follows that Ψ ˜ ( w ) 0 ˜ and 𝒫 ˜ ( w ) 0 ˜ , so that
Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × 𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ) ( h 2 ( ξ ) 𝒫 * ( u ,   θ ) + h 2 ( 1 ξ ) 𝒫 * ( υ ,   θ ) ) = Ψ * ( u ,   θ ) × 𝒫 * ( u ,   θ ) [ h 1 ( ξ ) h 2 ( ξ ) ] + Ψ * ( υ ,   θ ) × 𝒫 * ( υ ,   θ ) [ h 1 ( 1 ξ ) h 2 ( 1 ξ ) ] +   Ψ * ( u ,   θ ) 𝒫 * ( υ ,   θ ) h 1 ( ξ ) h 2 ( ξ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( u ,   θ ) h 1 ( 1 ξ ) h 2 ( ξ ) , Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × 𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ) ( h 2 ( ξ ) 𝒫 * ( u ,   θ ) + h 2 ( 1 ξ ) 𝒫 * ( υ ,   θ ) ) = Ψ * ( u ,   θ ) × 𝒫 * ( u ,   θ ) [ h 1 ( ξ ) h 2 ( ξ ) ] + Ψ * ( υ ,   θ ) × 𝒫 * ( υ ,   θ ) [ h 1 ( 1 ξ ) h 2 ( 1 ξ ) ] +   Ψ * ( u ,   θ ) 𝒫 * ( υ ,   θ ) h 1 ( ξ ) h 2 ( ξ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( u ,   θ ) h 1 ( 1 ξ ) h 2 ( ξ ) .
Integrating both sides of above inequality over [0, 1] results
0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × 𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) =   u υ υ u u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) w 2 d w ( Ψ * ( u ,   θ ) × 𝒫 * ( u ,   θ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( υ ,   θ ) ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ + ( Ψ * ( u ,   θ ) × 𝒫 * ( υ ,   θ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( u ,   θ ) ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ ,   0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × 𝒫 * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) =   u υ υ u u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) w 2 d w ( Ψ * ( u ,   θ ) × 𝒫 * ( u ,   θ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( υ ,   θ ) ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ + ( Ψ * ( u ,   θ ) × 𝒫 * ( υ ,   θ ) + Ψ * ( υ ,   θ ) × 𝒫 * ( u ,   θ ) ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ .
It follows that,
u υ υ u u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) d w * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ + N * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ ,   u υ υ u   u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) d w   * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ +   N * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ ,
that is
  u υ υ u [ u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) d w ,   u υ Ψ * ( w ,   θ ) × 𝒫 * ( w ,   θ ) d w ]
I [ * ( ( u , υ ) ,   θ ) ,   * ( ( u , υ ) ,   θ ) ] 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ
+ [ N * ( ( u , υ ) ,   θ ) ,   N * ( ( u , υ ) ,   θ ) ] 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ .
Thus,
  u υ υ u   ( F R ) u υ   Ψ ˜ ( w ) × ˜ 𝒫 ˜ ( w ) w 2 d w ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ + ˜   N ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ .
Theorem 7.
Let Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h 1 ) , 𝒫 ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h 2 ) , whose  θ -levels Ψ θ 𝒫 θ : [ u ,   υ ] K C + that are defined by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  and 𝒫 θ ( w ) = [ 𝒫 * ( w , θ ) ,   𝒫 * ( w , θ ) ] for all  w [ u ,   υ ] , θ [ 0 ,   1 ] , respectively. If  h 1 ( 1 2 ) h 2 ( 1 2 ) 0  and Ψ ˜ × ˜ 𝒫 ˜ ( [ u ,   υ ] ,   θ ) , so that
1 2 h 1 ( 1 2 ) h 2 ( 1 2 )   Ψ ˜ ( 2 u υ u + υ ) × ˜ 𝒫 ˜ ( 2 u υ u + υ )
  u υ υ u   ( F R ) u υ   Ψ ˜ ( w ) × ˜ 𝒫 ˜ ( w ) w 2 d w + ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ + ˜   N ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ ,
where ˜ ( u ,   υ ) = Ψ ˜ ( u ) × ˜ 𝒫 ˜ ( u ) + ˜ Ψ ˜ ( υ ) × ˜ 𝒫 ˜ ( υ ) , N ˜ ( u ,   υ ) = Ψ ˜ ( u ) × ˜ 𝒫 ˜ ( u ) + ˜ Ψ ˜ ( υ ) × ˜ 𝒫 ˜ ( υ ) , θ ( u , υ ) = [ * ( ( u , υ ) ,   θ ) ,   * ( ( u , υ ) ,   θ ) ]  and  N θ ( u , υ ) = [ N * ( ( u , υ ) ,   θ ) ,   N * ( ( u , υ ) ,   θ ) ] .
Proof. 
By hypothesis, for each θ [ 0 ,   1 ] , we have
Ψ * ( 2 u υ u + υ , θ ) × J * ( 2 u υ u + υ , θ )   Ψ * ( 2 u υ u + υ , θ ) × J * ( 2 u υ u + υ , θ )
h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] +   h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ] , h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] +   h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ] ,
h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] + h 1 ( 1 2 ) h 2 ( 1 2 ) [ ( h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ) × ( h 2 ( 1 ξ ) J * ( u ,   θ ) + h 2 ( ξ ) J * ( υ ,   θ ) ) + ( h 1 ( 1 ξ ) Ψ * ( u ,   θ ) + h 1 ( ξ ) Ψ * ( υ ,   θ ) ) × ( h 2 ( ξ ) J * ( u ,   θ ) + h 2 ( 1 ξ ) J * ( υ ,   θ ) ) ] , h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] + h 1 ( 1 2 ) h 2 ( 1 2 ) [ ( h 1 ( ξ ) Ψ * ( u ,   θ ) + h 1 ( 1 ξ ) Ψ * ( υ ,   θ ) ) × ( h 2 ( 1 ξ ) J * ( u ,   θ ) + h 2 ( ξ ) J * ( υ ,   θ ) ) × ( h 2 ( 1 ξ ) J * ( u ,   θ ) + h 2 ( ξ ) J * ( υ ,   θ ) ) × ( h 2 ( ξ ) J * ( u ,   θ ) + h 2 ( 1 ξ ) J * ( υ ,   θ ) ) ] ,
= h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] + h 1 ( 1 2 ) h 2 ( 1 2 ) [ { h 1 ( ξ ) h 2 ( ξ ) + h 1 ( 1 ξ ) h 2 ( 1 ξ ) } N * ( ( u , υ ) ,   θ ) + { h 1 ( ξ ) h 2 ( 1 ξ ) + h 1 ( 1 ξ ) h 2 ( ξ ) } * ( ( u , υ ) ,   θ ) ] , = h 1 ( 1 2 ) h 2 ( 1 2 ) [ Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) × J * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ] + h 1 ( 1 2 ) h 2 ( 1 2 ) [ { h 1 ( ξ ) h 2 ( ξ ) + h 1 ( 1 ξ ) h 2 ( 1 ξ ) } N * ( ( u , υ ) ,   θ ) + { h 1 ( ξ ) h 2 ( 1 ξ ) + h 1 ( 1 ξ ) h 2 ( ξ ) } * ( ( u , υ ) ,   θ ) ] ,
Integrating over [ 0 ,   1 ] , gives
1 2 h 1 ( 1 2 ) h 2 ( 1 2 )   Ψ * ( 2 u υ u + υ , θ ) × J * ( 2 u υ u + υ , θ ) 1 υ u   ( R ) u υ Ψ * ( w , θ ) × J * ( w , θ ) d w   +   * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ   + N * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ ,   1 2 h 1 ( 1 2 ) h 2 ( 1 2 )   Ψ * ( 2 u υ u + υ , θ ) × J * ( 2 u υ u + υ , θ ) 1 υ u   ( R ) u υ Ψ * ( w , θ ) × J * ( w , θ ) d w   +   * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ + N * ( ( u , υ ) ,   θ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ ,
that is
1 2 h 1 ( 1 2 ) h 2 ( 1 2 )   Ψ ˜ ( 2 u υ u + υ ) × ˜ 𝒫 ˜ ( 2 u υ u + υ )
  u υ υ u   ( F R ) u υ   Ψ ˜ ( w ) × ˜ 𝒫 ˜ ( w ) w 2 d w + ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( 1 ξ ) d ξ + ˜   N ˜ ( u , υ ) 0 1 h 1 ( ξ ) h 2 ( ξ ) d ξ .
The theorem has been proved. □
We now discuss an inequality related with the right part of the classical H H Fejér inequality for harmonically h -convex F-I-V-Fs through a fuzzy order relation, called second fuzzy H H Fejér inequality.
Theorem 8.
(Second fuzzy H H Fejér inequality) Let  Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) , whose  θ -levels define the family of I-V-Fs  Ψ θ : [ u ,   υ ] K C +  that are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w [ u ,   υ ] , θ [ 0 ,   1 ] . If  Ψ ˜ ( [ u ,   υ ] ,   θ )  and  : [ u ,   υ ] ,   ( 1 1 u + 1 υ 1 w ) = ( w ) 0 ,  then
u υ ν u   ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( ν ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ .
If Ψ ˜ H F S V ( [ u ,   υ ] ,   F 0 ,   h ) , then inequality (25) is reversed such that
u υ ν u   ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( ν ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ .
Proof. 
Let Ψ be a h -convex F-I-V-F. Then, for each θ [ 0 ,   1 ] , we have
Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) ( h ( ξ ) Ψ * ( u ,   θ ) + h ( 1 ξ ) Ψ * ( ν ,   θ ) ) ( u υ ( 1 ξ ) u + ξ υ ) , Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) ( h ( ξ ) Ψ * ( u ,   θ ) + h ( 1 ξ ) Ψ * ( ν ,   θ ) ) ( u υ ( 1 ξ ) u + ξ υ ) .
Similarly, we can write
Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ )   ( h ( 1 ξ ) Ψ * ( u ,   θ ) + h ( ξ ) Ψ * ( ν ,   θ ) ) ( u υ ξ u + ( 1 ξ ) υ ) , Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ )   ( h ( 1 ξ ) Ψ * ( u ,   θ ) + h ( ξ ) Ψ * ( ν ,   θ ) ) ( u υ ξ u + ( 1 ξ ) υ ) .
After adding (26) and (27), and integrating over [ 0 ,   1 ] , we obtain
0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ     + 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ 0 1 [ Ψ * ( u ,   θ ) { h ( ξ ) ( u υ ( 1 ξ ) u + ξ υ ) + h ( 1 ξ ) ( u υ ξ u + ( 1 ξ ) υ ) } + Ψ * ( ν ,   θ ) { h ( 1 ξ ) ( u υ ( 1 ξ ) u + ξ υ ) + h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) } ] d ξ , 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ     + 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ 0 1 [ Ψ * ( u ,   θ ) { h ( ξ ) ( u υ ( 1 ξ ) u + ξ υ ) + h ( 1 ξ ) ( u υ ξ u + ( 1 ξ ) υ ) } + Ψ * ( ν ,   θ ) { h ( 1 ξ ) ( u υ ( 1 ξ ) u + ξ υ ) + h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) } ] d ξ ,
= 2 Ψ * ( u ,   θ ) 0 1 h ( ξ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ + 2 Ψ * ( ν ,   θ ) 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ , = 2 Ψ * ( u ,   θ ) 0 1 h ( ξ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ + 2 Ψ * ( ν ,   θ ) 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ .
Since is symmetric, then
    = 2 [ Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ , = 2 [ Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ .
Therefore, results
0 1 Ψ * ( ξ u + ( 1 ξ ) ν ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ   = 0 1 Ψ * ( ( 1 ξ ) u + ξ ν ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ   = u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w 0 1 Ψ * ( ( 1 ξ ) u + ξ ν ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ     = 0 1 Ψ * ( ξ u + ( 1 ξ ) ν ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ = u υ ν u   u ν Ψ * ( w ,   θ ) ( w ) d w .    
From (28) and (29), we have
u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w [ Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ , u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w [ Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ ,
that is
[ u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w ,   u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w ]   I [ Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ,   Ψ * ( u ,   θ ) + Ψ * ( ν ,   θ ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ ,
and hence
u υ ν u   ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w [ Ψ ˜ ( u )   + ˜   Ψ ˜ ( ν ) ] 0 1 h ( ξ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ ,
concludes the proof. □
Next, we construct first 𝐻⋅𝐻 Fej´er inequality for harmonically h-convex F-I-V-F, which generalizes first 𝐻⋅𝐻 Fej´er inequality for harmonically convex function.
Theorem 9.
(First fuzzy fractional H H Fejér inequality) Let  Ψ ˜ H F S X ( [ u ,   υ ] ,   F 0 ,   h ) , whose  θ -levels define the family of I-V-Fs  Ψ θ : [ u ,   υ ] K C +  that are given by  Ψ θ ( w ) = [ Ψ * ( w , θ ) ,   Ψ * ( w , θ ) ]  for all  w [ u ,   υ ] , θ [ 0 ,   1 ] . If  Ψ ˜ ( [ u ,   ν ] ,   θ )  and  : [ u ,   υ ] ,   ( 1 1 u + 1 υ 1 w ) = ( w ) 0 ,  so that
1 2 h ( 1 2 )   Ψ ˜ ( 2 u ν u + ν ) u ν Ψ ˜ ( w ) w 2 d w ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w
If Ψ ˜ H F S V ( [ u ,   υ ] ,   F 0 ,   h ) , then inequality (30) is reversed such that
1 2 h ( 1 2 )   Ψ ˜ ( 2 u ν u + ν ) u ν Ψ ˜ ( w ) w 2 d w ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w .
Proof. 
Since Ψ is a harmonically h -convex, then for θ [ 0 ,   1 ] , we have
Ψ * ( 2 u ν u + ν ,   θ )     h ( 1 2 ) ( Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ) Ψ * ( 2 u ν u + ν ,   θ ) h ( 1 2 ) ( Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) + Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ) .  
By multiplying (31) by ( u υ ( 1 ξ ) u + ξ υ ) = ( u υ ξ u + ( 1 ξ ) υ ) and integrating it by ξ over [ 0 ,   1 ] , yields
Ψ * ( 2 u ν u + ν ,   θ ) 0 1 ( u υ ξ u + ( 1 ξ ) υ ) d ξ   h ( 1 2 ) ( 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ + 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ ) Ψ * ( 2 u ν u + ν ,   θ ) 0 1 ( u υ ξ u + ( 1 ξ ) υ ) d ξ   h ( 1 2 ) ( 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ + 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ )
Therefore, results
0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ     = 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ , = u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w , 0 1 Ψ * ( u υ ξ u + ( 1 ξ ) υ ,   θ ) ( u υ ξ u + ( 1 ξ ) υ ) d ξ   = 0 1 Ψ * ( u υ ( 1 ξ ) u + ξ υ ,   θ ) ( u υ ( 1 ξ ) u + ξ υ ) d ξ , = u υ ν u   u ν Ψ * ( w , θ ) ( w ) d w .
From (32) and (33), results
Ψ * ( 2 u ν u + ν ,   θ )   2 h ( 1 2 ) u ν ( w ) d w   u ν Ψ * ( w , θ ) ( w ) d w , Ψ * ( 2 u ν u + ν ,   θ )   2 h ( 1 2 ) u ν ( w ) d w   u ν Ψ * ( w , θ ) ( w ) d w ,
from which, we have
[ Ψ * ( 2 u ν u + ν ,   θ ) ,     Ψ * ( 2 u ν u + ν ,   θ ) ] I 2 h ( 1 2 ) u ν ( w ) d w [   u ν Ψ * ( w , θ ) ( w ) d w ,       u ν Ψ * ( w , θ ) ( w ) d w ] ,    
that is
1 2 h ( 1 2 )   Ψ ˜ ( 2 u ν u + ν ) u ν Ψ ˜ ( w ) w 2 d w ( F R ) u ν Ψ ˜ ( w ) w 2 ( w ) d w ,
is completes the proof. □
Remark 4.
If  ( w ) = 1 , then from Theorems 10 and 11, we obtain inequality (17).
If h ( ξ ) = ξ , then from Theorems 10 and 11, we obtain results for harmonically convex F-I-V-Fs, see [28].
If Ψ * ( w , θ ) = Ψ * ( w ,   θ ) with θ = 1 and h ( ξ ) = ξ   , then Theorems 10 and 11 reduce to the classical first and second classical 𝐻⋅𝐻 Fejér inequality for classical harmonically convex function.

4. Conclusions and Future Plan

In this paper, we proposed an approach for the Hermite–Hadamard type integral inequalities via harmonically h -convex F-I-V-Fs. The main findings include some new bounds of integral mean of harmonically h -convex F-I-V-Fs with error estimations via fuzzy Riemann integrals. We also proved Fej´er type inequality with the same argument. We find in the literature several papers with classical integrals and fundamental concepts. These papers aim to provide new estimations and optimal approaches for harmonically h -convex F-I-V-Fs. The main idea of this paper is that we can obtain new results by using fuzzy integrals for harmonically h -convex F-I-V-Fs calculus. In future, we will explore this concept via the fuzzy Riemann–Liouville nd Hes fractional integrals.

Author Contributions

Conceptualization, M.B.K.; validation, J.L.G.G.; formal analysis, J.L.G.G. and J.L.G.G.; investigation, M.B.K. and J.A.T.M.; resources, M.B.K. and J.A.T.M.; writing—original draft, M.B.K. and J.A.T.M.; writing—review and editing, M.B.K., and P.O.M.; visualization, J.A.T.M., P.O.M. and J.L.G.G.; supervision, J.A.T.M. and P.O.M.; project administration, J.A.T.M. and J.L.G.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

In The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments. This research has been partially supported by Ministerio de Ciencia, Innovacion y Universidades grant number PGC2018-0971-B-100 and Fundacion Seneca de la Region de Murcia grant number 20783/PI/18.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
  2. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
  3. Avci, M.; Kavurmaci, H.; Ozdemir, M.E. New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 2011, 217, 5171–5176. [Google Scholar] [CrossRef]
  4. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  5. Cerone, P.; Dragomir, S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstr. Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
  6. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
  7. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
  8. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; Science Direct Working Paper; S1574-0358 2003. Available online: https://ssrn.com/abstract=3158351 (accessed on 18 November 2021).
  9. Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variations. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
  10. Grinalatt, M.; Linnainmaa, J.T. Jensen’s Inequality, Parameter Uncertainty, and Multiperiod Investment; Chicago Booth Research Paper, CRSP Working Paper. 2010. Available online: https://ssrn.com/abstract=1629189 (accessed on 18 November 2021).
  11. Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of HermiteHadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
  12. Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
  13. Mohammed, P.O.; Brevik, I. A New version of the Hermite-Hadamard inequality for RiemannLiouville fractional Integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
  14. de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
  16. Costa, T.M.; Bouwmeester, H.; Lodwick, W.A.; Lavor, C. Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis. Inf. Sci. 2017, 415, 41–52. [Google Scholar] [CrossRef]
  17. Osuna-Gomez, R.; Chalco-Cano, Y.; Hernandez-Jimenezz, B.; Ruiz-Garzon, G. Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 2015, 321, 136–146. [Google Scholar] [CrossRef]
  18. Chalco-Cano, Y.; Flores-Franulic, A.; Roman-Flores, H. Ostrowski type inequalities for intervalvalued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  19. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  20. Roman-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  21. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  22. Flores-Franulic, A.; Chalco-Cano, Y.; Flores, H.R. An Ostrowski type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1459–1462. [Google Scholar]
  23. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Results Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  24. Mitroi, F.C.; Nikodem, K.; Wasowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstr. Math. 2013, 46, 655–662. [Google Scholar] [CrossRef] [Green Version]
  25. Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H.; Sarikaya, M.Z. Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals. J. Inequal. Appl. 2020, 2020, 222. [Google Scholar] [CrossRef]
  26. Li, Z.B.; Zahoor, M.S.; Akhtar, H. Hermite-Hadamard and fractional integral inequalities for interval-valued generalized p-convex function. J. Math. 2020, 2020, 4606439. [Google Scholar] [CrossRef]
  27. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  28. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  29. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  30. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  31. Khan, M.B.; Noor, M.A.; Abdullah, L.; Noor, K.I. New Hermite-Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2021, 14, 1–16. [Google Scholar] [CrossRef]
  32. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
  33. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  34. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef] [PubMed]
  35. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
  36. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J.L.G. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
  37. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. On Strongly Generalized Preinvex Fuzzy Mappings. J. Math. 2021, 2021, 6657602. [Google Scholar] [CrossRef]
  38. Khan, M.B.; Noor, M.A.; Noor, K.I.; Ghani, A.T.A.; Abdullah, L. Extended perturbed mixed variational-like inequalities for fuzzy mappings. J. Math. 2021, 2021, 6652930. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Noor, M.A.; Noor, K.I.; Almusawa, H.; Nisar, K.S. Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities. Int. J. Anal. Appl. 2021, 19, 518–541. [Google Scholar]
  40. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
  41. Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
  42. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  43. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  44. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  45. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  46. Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  47. Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
  48. Antão, R.M.; Mota, A.; Martins, R.E.; Machado, J.T. Type-2 Fuzzy Logic Uncertain Systems’ Modeling and Control; Series: Nonlinear Physical Science; Springer Jointly Published with Higher Education Press: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
  49. Touchent, K.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
  50. Vanli, A.; Ünal, I.; Özdemir, D. Normal complex contact metric manifolds admitting a semi symmetric metric connection. Appl. Math. Nonlinear Sci. 2020, 5, 49–66. [Google Scholar] [CrossRef]
  51. Sharifi, M.; Raesi, B. Vortex Theory for Two Dimensional Boussinesq Equations. Appl. Math. Nonlinear Sci. 2020, 5, 67–84. [Google Scholar] [CrossRef]
  52. Kanna, M.R.; Kumar, R.P.; Nandappa, S.; Cangul, I. On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method. Appl. Math. Nonlinear Sci. 2020, 5, 85–98. [Google Scholar] [CrossRef]
  53. Ranjini, P.S.; Lokesha, V.; Kumar, S. Degree Sequence of Graph Operator for some Standard Graphs. Appl. Math. Nonlinear Sci. 2020, 5, 99–108. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L.G. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. https://doi.org/10.3390/sym13122352

AMA Style

Khan MB, Mohammed PO, Machado JAT, Guirao JLG. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry. 2021; 13(12):2352. https://doi.org/10.3390/sym13122352

Chicago/Turabian Style

Khan, Muhammad Bilal, Pshtiwan Othman Mohammed, José António Tenreiro Machado, and Juan L. G. Guirao. 2021. "Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings" Symmetry 13, no. 12: 2352. https://doi.org/10.3390/sym13122352

APA Style

Khan, M. B., Mohammed, P. O., Machado, J. A. T., & Guirao, J. L. G. (2021). Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry, 13(12), 2352. https://doi.org/10.3390/sym13122352

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop