Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings
Abstract
:1. Introduction
2. Preliminary Concepts
- (1)
- is normal, i.e., there exists such that
- (2)
- is upper semi continuous, i.e., for given for every there exists there exists such that for all with
- (3)
- is fuzzy convex, i.e., and ;
- (4)
- is compactly supported, i.e., is compact.
3. Fuzzy-Interval Hermite-Hadamard Inequalities
4. Conclusions and Future Plan
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
- Avci, M.; Kavurmaci, H.; Ozdemir, M.E. New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 2011, 217, 5171–5176. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstr. Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; Science Direct Working Paper; S1574-0358 2003. Available online: https://ssrn.com/abstract=3158351 (accessed on 18 November 2021).
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variations. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Grinalatt, M.; Linnainmaa, J.T. Jensen’s Inequality, Parameter Uncertainty, and Multiperiod Investment; Chicago Booth Research Paper, CRSP Working Paper. 2010. Available online: https://ssrn.com/abstract=1629189 (accessed on 18 November 2021).
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of HermiteHadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A New version of the Hermite-Hadamard inequality for RiemannLiouville fractional Integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Costa, T.M.; Bouwmeester, H.; Lodwick, W.A.; Lavor, C. Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis. Inf. Sci. 2017, 415, 41–52. [Google Scholar] [CrossRef]
- Osuna-Gomez, R.; Chalco-Cano, Y.; Hernandez-Jimenezz, B.; Ruiz-Garzon, G. Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 2015, 321, 136–146. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Flores-Franulic, A.; Roman-Flores, H. Ostrowski type inequalities for intervalvalued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Roman-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Flores-Franulic, A.; Chalco-Cano, Y.; Flores, H.R. An Ostrowski type inequality for interval-valued functions. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1459–1462. [Google Scholar]
- Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Results Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
- Mitroi, F.C.; Nikodem, K.; Wasowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstr. Math. 2013, 46, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H.; Sarikaya, M.Z. Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals. J. Inequal. Appl. 2020, 2020, 222. [Google Scholar] [CrossRef]
- Li, Z.B.; Zahoor, M.S.; Akhtar, H. Hermite-Hadamard and fractional integral inequalities for interval-valued generalized p-convex function. J. Math. 2020, 2020, 4606439. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Noor, K.I. New Hermite-Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abualnaja, K.M. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J.L.G. Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms 2021, 10, 175. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. On Strongly Generalized Preinvex Fuzzy Mappings. J. Math. 2021, 2021, 6657602. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Ghani, A.T.A.; Abdullah, L. Extended perturbed mixed variational-like inequalities for fuzzy mappings. J. Math. 2021, 2021, 6652930. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Almusawa, H.; Nisar, K.S. Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities. Int. J. Anal. Appl. 2021, 19, 518–541. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Antão, R.M.; Mota, A.; Martins, R.E.; Machado, J.T. Type-2 Fuzzy Logic Uncertain Systems’ Modeling and Control; Series: Nonlinear Physical Science; Springer Jointly Published with Higher Education Press: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Touchent, K.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
- Vanli, A.; Ünal, I.; Özdemir, D. Normal complex contact metric manifolds admitting a semi symmetric metric connection. Appl. Math. Nonlinear Sci. 2020, 5, 49–66. [Google Scholar] [CrossRef]
- Sharifi, M.; Raesi, B. Vortex Theory for Two Dimensional Boussinesq Equations. Appl. Math. Nonlinear Sci. 2020, 5, 67–84. [Google Scholar] [CrossRef]
- Kanna, M.R.; Kumar, R.P.; Nandappa, S.; Cangul, I. On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method. Appl. Math. Nonlinear Sci. 2020, 5, 85–98. [Google Scholar] [CrossRef]
- Ranjini, P.S.; Lokesha, V.; Kumar, S. Degree Sequence of Graph Operator for some Standard Graphs. Appl. Math. Nonlinear Sci. 2020, 5, 99–108. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L.G. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. https://doi.org/10.3390/sym13122352
Khan MB, Mohammed PO, Machado JAT, Guirao JLG. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry. 2021; 13(12):2352. https://doi.org/10.3390/sym13122352
Chicago/Turabian StyleKhan, Muhammad Bilal, Pshtiwan Othman Mohammed, José António Tenreiro Machado, and Juan L. G. Guirao. 2021. "Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings" Symmetry 13, no. 12: 2352. https://doi.org/10.3390/sym13122352
APA StyleKhan, M. B., Mohammed, P. O., Machado, J. A. T., & Guirao, J. L. G. (2021). Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry, 13(12), 2352. https://doi.org/10.3390/sym13122352