Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation?
Abstract
:1. Introduction
2. Spatial Fractional Derivatives and Lévy Flights
3. Time Fractional Derivatives and Lévy Walks
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. TOPICAL REVIEW: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161–R208. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Zaburdaev, V.; Denisov, S.; Klafter, J. Lévy walks. Rev. Mod. Phys. 2015, 87, 483–530. [Google Scholar] [CrossRef] [Green Version]
- Lin, R. Non-relativistic solar electrons. Space Sci. Rev. 1974, 16, 189–256. [Google Scholar] [CrossRef]
- Perri, S.; Zimbardo, G. Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 2007, 671, L177. [Google Scholar] [CrossRef]
- Sugiyama, T.; Shiota, D. Sign for Super-diffusive Transport of Energetic Ions Associated with a Coronal-mass-ejection-driven Interplanetary Shock. Astrophys. J. Lett. 2011, 731, L34. [Google Scholar] [CrossRef]
- Perri, S.; Zimbardo, G. Short Acceleration Times from Superdiffusive Shock Acceleration in the Heliosphere. Astrophys. J. 2015, 815, 75. [Google Scholar] [CrossRef] [Green Version]
- Perri, S.; Zimbardo, G.; Effenberger, F.; Fichtner, H. Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks. Astron. Astrophys. 2015, 578, A2. [Google Scholar] [CrossRef] [Green Version]
- Prete, G.; Perri, S.; Zimbardo, G. Energetic particle fluxes at heliospheric shocks: Evidences of superdiffusion and comparison between analytical and numerical modeling. New Astron. 2021, 87, 101605. [Google Scholar] [CrossRef]
- Ragot, B.R.; Kirk, J.G. Anomalous transport of cosmic ray electrons. Astron. Astrophys. 1997, 327, 432–440. [Google Scholar]
- Perri, S.; Amato, E.; Zimbardo, G. Transport of relativistic electrons at shocks in shell-type supernova remnants: Diffusive and superdiffusive regimes. Astron. Astrophys. 2016, 596, A34. [Google Scholar] [CrossRef] [Green Version]
- Perri, S. Superdiffusion of relativistic electrons at supernova remnant shocks. Plasma Phys. Control Fusion 2018, 60, 014005. [Google Scholar] [CrossRef] [Green Version]
- Zimbardo, G.; Perri, S. Superdiffusive shock acceleration at galaxy cluster shocks. Nat. Astron. 2017, 1, 0163. [Google Scholar] [CrossRef]
- Zimbardo, G.; Perri, S. Understanding the radio spectral indices of galaxy cluster relics by superdiffusive shock acceleration. Mon. Not. R. Astron. Soc. 2018, 478, 4922–4930. [Google Scholar] [CrossRef]
- Giacalone, J.; Jokipii, J. The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 1999, 520, 204. [Google Scholar] [CrossRef]
- Shalchi, A. A unified particle diffusion theory for cross-field scattering: Subdiffusion, recovery of diffusion, and diffusion in three-dimensional turbulence. Astrophys. J. Lett. 2010, 720, L127. [Google Scholar] [CrossRef]
- Veltri, P.; Zimbardo, G. Electron-whistler interaction at the Earth’s bow shock: 1. Whistler instability. J. Geophys. Res. 1993, 98, 13325–13334. [Google Scholar] [CrossRef]
- Veltri, P.; Zimbardo, G. Electron-whistler interaction at the Earth’s bow shock: 2. Electron pitch angle diffusion. J. Geophys. Res. 1993, 98, 13335–13346. [Google Scholar] [CrossRef]
- Shlesinger, M.F.; West, B.J.; Klafter, J. Levy dynamics of enhanced diffusion—Application to turbulence. Phys. Rev. Lett. 1987, 58, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Klafter, J.; Blumen, A.; Shlesinger, M.F. Stochastic pathway to anomalous diffusion. Phys. Rev. A 1987, 35, 3081–3085. [Google Scholar] [CrossRef]
- Perri, S.; Zimbardo, G. Superdiffusive shock acceleration. Astrophys. J. 2012, 750, 87. [Google Scholar] [CrossRef]
- Zimbardo, G.; Perri, S. From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 2013, 778, 35. [Google Scholar] [CrossRef] [Green Version]
- Perri, S.; Zimbardo, G. Evidence for superdiffusive shock acceleration at interplanetary shock waves. J. Phys. Conf. Ser. 2015, 642, 012020. [Google Scholar] [CrossRef]
- del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.E. Fractional diffusion in plasma turbulence. Phys. Plasmas 2004, 11, 3854–3864. [Google Scholar] [CrossRef]
- Isliker, H.; Vlahos, L.; Constantinescu, D. Fractional Transport in Strongly Turbulent Plasmas. Phys. Rev. Lett. 2017, 119, 045101. [Google Scholar] [CrossRef] [Green Version]
- Isliker, H.; Pisokas, T.; Vlahos, L.; Anastasiadis, A. Particle Acceleration and Fractional Transport in Turbulent Reconnection. Astrophys. J. 2017, 849, 35. [Google Scholar] [CrossRef] [Green Version]
- le Roux, J.A.; Zank, G.P. A Focused Transport-based Kinetic Fractional Diffusion-advection Equation for Energetic Particle Trapping and Reconnection-related Acceleration by Small-scale Magnetic Flux Ropes in the Solar Wind. Astrophys. J. 2021, 913, 84. [Google Scholar] [CrossRef]
- Perrone, D.; Dendy, R.; Furno, I.; Sanchez, R.; Zimbardo, G.; Bovet, A.; Fasoli, A.; Gustafson, K.; Perri, S.; Ricci, P.; et al. Nonclassical transport and particle-field coupling: From laboratory plasmas to the solar wind. Space Sci. Rev. 2013, 178, 233–270. [Google Scholar] [CrossRef] [Green Version]
- del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.E. Nondiffusive Transport in Plasma Turbulence: A Fractional Diffusion Approach. Phys. Rev. Lett. 2005, 94, 065003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimbardo, G.; Perri, S. Non-Markovian Pitch-angle Scattering as the Origin of Particle Superdiffusion Parallel to the Magnetic Field. Astrophys. J. 2020, 903, 105. [Google Scholar] [CrossRef]
- de Oliveira, E.; Machado, J. A Review of Definitions for Fractional Derivatives and Integrals. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Gorenflo, R. Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 2007, 10, 269–308. [Google Scholar]
- Zumofen, G.; Klafter, J. Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 1993, 47, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, I.M.; Metzler, R. Towards deterministic equations for Lévy walks: The fractional material derivative. Phys. Rev. E 2003, 67, 010101. [Google Scholar] [CrossRef] [Green Version]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Gurnett, D.A.; Bhattacharjee, A. Introduction to Plasma Physics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Shalchi, A. Analytical investigation of the two-dimensional cosmic ray Fokker-Planck equation. Astron. Astrophys. 2006, 448, 809–816. [Google Scholar] [CrossRef]
- Lee, M.A.; Mewaldt, R.A.; Giacalone, J. Shock Acceleration of Ions in the Heliosphere. Space Sci. Rev. 2012, 173, 247–281. [Google Scholar] [CrossRef]
- Moraal, H. Cosmic-Ray Modulation Equations. Space Sci. Rev. 2013, 176, 299–319. [Google Scholar] [CrossRef]
- Riordan, J.D.; Pe’er, A. Pitch-angle Diffusion and Bohm-type Approximations in Diffusive Shock Acceleration. Astrophys. J. 2019, 873, 13. [Google Scholar] [CrossRef] [Green Version]
- Sioulas, N.; Isliker, H.; Vlahos, L.; Koumtzis, A.; Pisokas, T. Superdiffusive stochastic Fermi acceleration in space and energy. Mon. Not. R. Astron. Soc. 2020, 491, 3860–3869. [Google Scholar] [CrossRef]
- Bian, N.H.; Browning, P.K. Particle Acceleration in a Model of a Turbulent Reconnecting Plasma: A Fractional Diffusion Approach. Astrophys. J. Lett. 2008, 687, L111. [Google Scholar] [CrossRef]
- Perri, S.; Lepreti, F.; Carbone, V.; Vulpiani, A. Position and velocity space diffusion of test particles in stochastic electromagnetic fields. EPL (Europhys. Lett.) 2007, 78, 40003. [Google Scholar] [CrossRef]
- Perri, S.; Greco, A.; Zimbardo, G. Stochastic and direct acceleration mechanisms in the Earth’s magnetotail. Geophys. Res. Lett. 2009, 36, L04103. [Google Scholar] [CrossRef]
- Goldstein, M.L. A nonlinear theory of cosmic-ray pitch-angle diffusion in homogeneous magnetostatic turbulence. Astrophys. J. 1976, 204, 900–919. [Google Scholar] [CrossRef] [Green Version]
- Lasuik, J.; Shalchi, A. Solutions of the cosmic ray velocity diffusion equation. Adv. Space Res. 2017, 60, 1532–1546. [Google Scholar] [CrossRef]
- Perri, S.; Zimbardo, G. Magnetic variances and pitch-angle scattering times upstream of interplanetary shocks. Astrophys. J. 2012, 754, 8. [Google Scholar] [CrossRef]
- Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F. Energetic particle transport in the presence of magnetic turbulence: Influence of spectral extension and intermittency. Mon. Not. R. Astron. Soc. 2016, 459, 3395–3406. [Google Scholar] [CrossRef]
- Perri, S.; Pucci, F.; Malara, F.; Zimbardo, G. On the Power-Law Distribution of Pitch-Angle Scattering Times in Solar Wind Turbulence. Sol. Phys. 2019, 294, 34. [Google Scholar] [CrossRef]
- Malara, F.; Perri, S.; Zimbardo, G. Charged-particle chaotic dynamics in rotational discontinuities. Phys. Rev. E 2021, 104, 025208. [Google Scholar] [CrossRef]
- Perri, S.; Prete, G.; Malara, F.; Pucci, F.; Zimbardo, G. The Influence of Magnetic Turbulence on the Energetic Particle Transport Upstream of Shock Waves. Atmosphere 2021, 12, 508. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R. On some properties of the Mittag-Leffler function Eα(t), completely monotone for t > 0 with 0 < α < 1. Discret. Contin. Dyn. Syst.-Ser. B (DCDS-B) 2014, 19, 2267–2278. [Google Scholar]
- Shalchi, A.; Skoda, T.; Tautz, R.C.; Schlickeiser, R. Analytical description of nonlinear cosmic ray scattering: Isotropic and quasilinear regimes of pitch-angle diffusion. Astron. Astrophys. 2009, 507, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Shalchi, A. Applicability of the Taylor-Green-Kubo formula in particle diffusion theory. Phys. Rev. E 2011, 83, 046402. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Metzler, R. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 2010, 81, 021103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, M.; Malkov, M.A. Power-law spectra from stochastic acceleration. Mon. Not. R. Astron. Soc. 2020, 499, 4972–4983. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimbardo, G.; Malara, F.; Perri, S. Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation? Symmetry 2021, 13, 2368. https://doi.org/10.3390/sym13122368
Zimbardo G, Malara F, Perri S. Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation? Symmetry. 2021; 13(12):2368. https://doi.org/10.3390/sym13122368
Chicago/Turabian StyleZimbardo, Gaetano, Francesco Malara, and Silvia Perri. 2021. "Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation?" Symmetry 13, no. 12: 2368. https://doi.org/10.3390/sym13122368
APA StyleZimbardo, G., Malara, F., & Perri, S. (2021). Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation? Symmetry, 13(12), 2368. https://doi.org/10.3390/sym13122368