A Note on the Summation of the Incomplete Gamma Function
Abstract
:1. Significance Statement
2. Introduction
The Incomplete Gamma Function
3. The Hurwitz-Lerch Zeta Function
4. Hurwitz-Lerch Zeta Function in Terms of the Contour Integral
Additional Contour Integral
5. Incomplete Gamma Function in Terms of the Contour Integral
6. Special Cases
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lerch, M. Note sur la fonction . Acta Math. 1887, 11, 19–24. (In French) [Google Scholar] [CrossRef]
- Katsurada, M. Power series and asymptotic series associated with the Lerch zeta-function. Proc. Jpn. Acad. Ser. A Math. Sci. 1998, 74, 167–170. [Google Scholar] [CrossRef]
- Garunks̆tis, R.; Laurinc̆ikas, A. The lerch zeta-function. Integral Transform. Spec. Funct. 2000, 10, 1–189. [Google Scholar] [CrossRef]
- Kamlesh, J.; Dutt, P.S.; Sooppy, N.K.; Serkan, A. Generating functions involving the incomplete H-functions. Analysis 2021, 41, 239–244. [Google Scholar] [CrossRef]
- Purohit, S.D.; Khan, A.M.; Suthar, D.L.; Dave, S. The Impact On Raise of Environmental Pollution and Occurrence In Biological Populations Pertaining to Incomplete H-function. Natl. Acad. Sci. Lett. 2021, 44, 263–266. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Fekete-Szegõ inequalities for certain class of analytic functions connected with q-analogue of Bessel function. J. Egypt. Math. Soc. 2019, 27, 42. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX); U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Erdéyli, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, More Special Functions; USSR Academy of Sciences: Moscow, Russia, 1990; Volume 1. [Google Scholar]
- Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Weisstein, E.W. Lerch Transcendent, from MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/LerchTranscendent.html (accessed on 2 October 2021).
- Lewin, L. Polylogarithms and Associated Functions; North-Holland Publishing Co.: New York, NY, USA, 1981. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. A Note on the Summation of the Incomplete Gamma Function. Symmetry 2021, 13, 2369. https://doi.org/10.3390/sym13122369
Reynolds R, Stauffer A. A Note on the Summation of the Incomplete Gamma Function. Symmetry. 2021; 13(12):2369. https://doi.org/10.3390/sym13122369
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2021. "A Note on the Summation of the Incomplete Gamma Function" Symmetry 13, no. 12: 2369. https://doi.org/10.3390/sym13122369
APA StyleReynolds, R., & Stauffer, A. (2021). A Note on the Summation of the Incomplete Gamma Function. Symmetry, 13(12), 2369. https://doi.org/10.3390/sym13122369