A New Formula for Calculating Uncertainty Distribution of Function of Uncertain Variables
Abstract
:1. Introduction
2. Preliminaries
3. A New Formula for Calculating Uncertainty Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B. Why is there a need for uncertainty theory. J. Uncertain Syst. 2012, 6, 3–10. [Google Scholar]
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Liu, B. Some research problems in uncertainty theory. J. Uncertain Syst. 2009, 3, 3–10. [Google Scholar]
- Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Springer: Berlin, Germany, 2010. [Google Scholar]
- Yao, K. A formula to calculate the variance of uncertain variable. Soft Comput. 2015, 19, 2947–2953. [Google Scholar] [CrossRef]
- Chen, X.; Dai, W. Maximum entropy principle for uncertain variables. Int. J. Fuzzy Syst. 2011, 13, 232–236. [Google Scholar]
- Ma, G.; Yang, X.; Yao, X. A relation between moments of Liu process and Bernoulli numbers. Fuzzy Optim. Decis. Making 2021, 20, 261–272. [Google Scholar] [CrossRef]
- Zhang, Z. Some discussions on uncertain measure. Fuzzy Optim. Decis. Making 2011, 10, 31–43. [Google Scholar] [CrossRef]
- Peng, Z.; Iwamura, K. A sufficient and necessary condition of uncertainty distribution. J. Interdiscip. Math. 2010, 13, 277–285. [Google Scholar] [CrossRef]
- Liu, Y.; Lio, W. A revision of sufficient and necessary condition of uncertainty distribution. J. Intell. Fuzzy Syst. 2020, 38, 4845–4854. [Google Scholar] [CrossRef]
- Liu, B. Extreme value theorems of uncertain process with application to insurance risk model. Soft Comput. 2013, 17, 549–556. [Google Scholar] [CrossRef]
- Lio, W.; Liu, B. Shortage index and shortage time of uncertain production risk process. IEEE Trans. Fuzzy Syst. 2020, 28, 2856–2863. [Google Scholar] [CrossRef]
- Yao, K. An uncertain single-server queueing model. J. Uncertain Syst. 2021, 14, 2150001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Lv, Y.; Wang, Z. A New Formula for Calculating Uncertainty Distribution of Function of Uncertain Variables. Symmetry 2021, 13, 2429. https://doi.org/10.3390/sym13122429
Jia Y, Lv Y, Wang Z. A New Formula for Calculating Uncertainty Distribution of Function of Uncertain Variables. Symmetry. 2021; 13(12):2429. https://doi.org/10.3390/sym13122429
Chicago/Turabian StyleJia, Yuxing, Yuer Lv, and Zhigang Wang. 2021. "A New Formula for Calculating Uncertainty Distribution of Function of Uncertain Variables" Symmetry 13, no. 12: 2429. https://doi.org/10.3390/sym13122429
APA StyleJia, Y., Lv, Y., & Wang, Z. (2021). A New Formula for Calculating Uncertainty Distribution of Function of Uncertain Variables. Symmetry, 13(12), 2429. https://doi.org/10.3390/sym13122429