Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study
Abstract
:1. Introduction
2. Summary of Basic Theory
2.1. Romanian Standard NP 081/2002
2.1.1. The Design Traffic
2.1.2. The Bearing Capacity of the Foundation Soil
2.1.3. The Bearing Capacity at the Level of the Base Course
2.1.4. Determining the Thickness of the Concrete Slab
2.2. The Mechanistic–Empirical Method MEPDG
3. Data Preparation Models with MEPDG Method
3.1. Climate Data for JPCP Model Development
3.2. Physical and Mechanical Characteristics of JPCP Models
4. Results and Discussion
4.1. Estimation of Cracking
4.2. Estimation of Faulting
4.3. Evaluation of International Roughness Index (IRI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCHRP. Guide for mechanistic–empirical design of new and rehabilitated pavement structures. In Proceedings of the 2004 Annual Conference and Exhibition of the Transportation Association of Canada-Transportation Innovation-Accelerating the Pace, Quebec, QC, Canada, 19–22 September 2004. [Google Scholar]
- NP 081/2002 Technical Recommendation for the Structural Design of Rigid Road Pavements—Romanian Standard; Bucharest, Roamania.
- Prozzi, J.A.; Madanat, S.M. Development of pavement performance models by combining experimental and field data. J. Infrastruct. Syst. 2004, 10, 9–22. [Google Scholar] [CrossRef]
- Amin, M.S.R. The pavement performance modeling: Deterministic vs. stochastic approaches. In Numerical Methods for Reliability and Safety Assessment: Multiscale and Multiphysics Systems, 1st ed.; Kadry, S., El Hami, A., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Timm, D.; Birgisson, B.; Newcomb, D. Development of mechanistic-empirical pavement design in Minnesota. Transp. Res. Rec. 1998, 1629, 181–188. [Google Scholar] [CrossRef]
- Gáspár, L.; Veeraragavan, A.; Bakó, A. Comparison of road pavement performance modelling of India and Hungary. Acta Tech. Jaurinensis 2009, 2, 35–55. Available online: http://journal.sze.hu/index.php/acta/article/view/205 (accessed on 8 October 2020).
- Plescan, E.L.; Plescan, C. Implementation of mechanistic-empirical pavement design guide ME-PDG in Romania. BUT Braşov. 2014, 7, 323–328. [Google Scholar]
- Carvalho, R.; Ayres, M.; Shirazi, H.; Selezneva, O.; Darter, M. Impact of Design Features on Pavement Response and Performance in Rehabilitated Flexible and Rigid Pavements. FHWA. 2011. Available online: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/10066/10066.pdf (accessed on 8 October 2020).
- Ameri, M.; Khavandi, A. Development of mechanistic-empirical flexible pavement design in Iran. J. Appl. Sci. 2009, 9, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Dai, Q.; Hiller, J. Investigation on the freeze-thaw damage to the jointed plain concrete pavement under different climate conditions. Front. Struct. Civ. Eng. 2018, 12, 227–238. [Google Scholar] [CrossRef]
- Bordelon, A.C.; Roesler, J.; Hiller, J.E. Mechanistic-Empirical Design Concepts for Jointed Plain Concrete Pavements in Illinois; Illinois Center for Transportation (ICT): Springfield, IL, USA, 2009; Available online: http://hdl.handle.net/2142/15210 (accessed on 8 July 2020).
- Li, Q.; Xiao, D.X.; Wang, K.C.P.; Hall, K.D.; Qiu, Y. Mechanistic-Empirical Pavement Design Guide (MEPDG): A bird’s-eye view. J. Mod. Transp. 2011, 19, 114–133. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Sufian, A.; Hossain, M.; Velasquez, N.; Barrett, R. Practical issues in implementation of mechanistic empirical design for concrete pavements. J. Transp. Eng. Part Pavements 2019, 145. [Google Scholar] [CrossRef]
- Harsini, I.; Haider, S.W.; Brink, W.C.; Buch, N.; Chatti, K. Investigation of significant inputs for pavement rehabilitation design in the pavement-me. Can. J. Civ. Eng. 2018, 45, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Eyada, S.O.; Celik, O.N. A plan for the implementation of mechanistic-empirical pavement design guide in Turkey. Pertanika J. Sci. Technol. 2018, 26, 1927–1949. [Google Scholar]
- Jannat, G.; Tighe, S.L. An experimental design-based evaluation of sensitivities of MEPDG prediction: Investigating main and interaction effects. Int. J. Pavement Eng. 2016, 17, 615–625. [Google Scholar] [CrossRef]
- Zhong, J. Rigid Pavement: Ontario Calibration of the Mechanistic-Empirical Pavement Design Guide Prediction Models. Master’s Thesis, Master of Applied Science in Civil Engineering, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Zhu, Y.; Ni, F.; Li, H. Calibration and sensitivity analysis of rut prediction model for semi-rigid pavement using AASHTOWare ME design. Road Mater. Pavement Des. 2017, 18, 23–32. [Google Scholar] [CrossRef]
- Mu, F.; Vandenbossche, J.M.; Gatti, K.A.; Sherwood, J.A. An evaluation of JPCP faulting and transverse cracking models of the mechanistic-empirical pavement design guide. Road Mater. Pavement Des. 2012, 13, 128–141. [Google Scholar] [CrossRef]
- Chong, D.; Wang, Y.; Dai, Z.; Chen, X.; Wang, D.; Oeser, M. Multiobjective optimization of asphalt pavement design and maintenance decisions based on sustainability principles and mechanistic-empirical pavement analysis. Int. J. Sustain. Transp. 2018, 12, 461–472. [Google Scholar] [CrossRef]
- Bayrak, O.Ü.; Hınıslıoğlu, S. A new approach to the design of rigid pavement: Single-Axle loading. Road Mater. Pavement Des. 2017, 18, 573–589. [Google Scholar] [CrossRef]
- STAS 1709/2 Road Works. The Action of the Freeze-Thaw Phenomenon in Road Works; Buchaarest, Romania.
- STAS 1243-1988 Soil Classification and Identification; Buchaarest, Romania.
- National Cooperative Highway Research Program Transportation Research Board (NCHRP). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures; Transportation Association of Canada (TAC): Ottawa, ON, Canada, 2004. [Google Scholar]
- Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Schwartz, C.W.; Li, R. Sensitivity analysis frameworks for mechanistic-empirical pavement design of continuously reinforced concrete pavements. Constr. Build. Mater. 2014, 73, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Beam, S. Estimating the sensitivity of design input variables for rigid pavement analysis with a mechanistic-empirical design guide. Transp. Res. Rec. 2005, 1919, 65–73. [Google Scholar] [CrossRef]
- Hajek, J.J.; Billing, J.R.; Swan, D.J. Forecasting traffic loads for mechanistic-empirical pavement design. Transp. Res. Rec. 2011, 2256, 151–158. [Google Scholar] [CrossRef]
- Bhattacharya, B.B.; Gotlif, A.; Darter, M.I.; Khazanovich, L. Impact of joint spacing on bonded concrete overlay of existing asphalt pavement in the AASHTOWare pavement ME design software. J. Transp. Eng. Part Pavements 2019, 145, 1–9. [Google Scholar] [CrossRef]
- Xu, C.; Cebon, D. Analysis of Cracking in Jointed Plain Concrete Pavements; Federal Highway Administration (FHWA) Georgetown: Washington, DC, USA, 2017. [Google Scholar]
- Guclu, A.; Ceylan, H.; Gopalakrishnan, K.; Kim, S. Sensitivity Analysis of Rigid Pavement Systems Using the Mechanistic-Empirical Design Guide Software. J. Transp. Eng. 2009, 135, 555–562. [Google Scholar] [CrossRef] [Green Version]
- American Association of State Highway and Transportation Officials Executive Committee. Performance Indicator Prediction Methodologies. In Mechanistic—Empirical Design Guide, a Manual of Practice; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008; pp. 33–49. [Google Scholar]
- Sayers, M.W.; Gillespie, T.D.; Queiroz, C.A.V. The International Road Roughness Experiment (IRRE): Establishing Correlation and a Calibration Standard for Measurements; World Bank Group: Washington, DC, USA, 1986. [Google Scholar]
- Sayers, M.W.; Gillespie, T.D.; Paterson, W.D.O. Guidelines for Conducting and Calibrating Road Roughness Measurements; The World Bank: Washington, DC, USA, 1986. [Google Scholar]
- Arhin, S.A.; Noel, E.C.; Ribbiso, A. Acceptable international roughness index thresholds based on present serviceability rating. J. Civ. Eng. Res. 2015, 5, 90–96. [Google Scholar]
- Pérez-Acebo, H.; Mindra, N.; Railean, A.; Rojí, E. Rigid pavement performance models by means of markov chains with half-year step time. Int. J. Pavement Eng. 2019, 20, 830–843. [Google Scholar] [CrossRef]
k | Vehicle Type | AADT (Millions of Standard Axles) MZA | Coefficient of Evolution (Growth Factor) pk | Equivalence Coefficient (ESAL-Equivalent Single Axle Load Factor) fek | |
---|---|---|---|---|---|
1 | 2 axle trucks | 358 | 2.68 | 0.30 | 288 |
2 | 3 and 4 axle trucks | 224 | 1.83 | 3.80 | 1558 |
3 | Articulated vehicle | 296 | 1.74 | 2.90 | 1494 |
4 | Buses | 81 | 2.30 | 1.50 | 279 |
5 | Farm tractors | 11 | 2.04 | 0.20 | 4 |
6 | Road trains | 46 | 1.48 | 1.60 | 109 |
Climate Type | Hydrologic Regime | Soil Type | ||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | ||
I | 1 | 56 | 53 | 46 | 50 | 50 |
2a | 56 | 53 | 44 | 50 | 48 | |
2b | 56 | 53 | 44 | 46 | 46 | |
II | 1 | 56 | 53 | 44 | 50 | 50 |
2a | 56 | 53 | 44 | 50 | 46 | |
2b | 56 | 50 | 44 | 46 | 46 | |
III | 1 | 56 | 53 | 42 | 39 | 50 |
2a | 56 | 50 | 42 | 37 | 44 | |
2b | 56 | 50 | 42 | 37 | 44 |
Concrete Slab Thickness (cm) | Subbase Type | Coefficient of Thermal Expansion (10−6/°C) | 28 Day PCC Pavement Concrete Compressive Strength (MPa) | Joint Design | ||
---|---|---|---|---|---|---|
4 m Code 1 | 6 m Code 2 | 8 m Code 3 | ||||
18 Code A | River-run gravel Code G | 10 Code 1 | 20 Code a | AG1a1 | AG1a2 | AG1a3 |
55 Code b | AG1b1 | AG1b2 | AG1b3 | |||
13 Code 2 | 20 Code a | AG2a1 | AG2a2 | AG2a3 | ||
55 Code b | AG2b1 | AG2b2 | AG2b3 | |||
Cement Stabilized Code S | 10 Code 1 | 20 Code a | AS1a1 | AS1a2 | AS1a3 | |
55 Code b | AS1b1 | AS1b2 | AS1b3 | |||
13 Code 2 | 20 Code a | AS2a1 | AS2a2 | AS2a3 | ||
55 Code b | AS2b1 | AS2b2 | AS2b3 | |||
23 Code B | River-run gravel Code G | 10 Code 1 | 20 Code a | BG1a1 | BG1a2 | BG1a3 |
55 Code b | BG1b1 | BG1b2 | BG1b3 | |||
13 Code 2 | 20 Code a | BG2a1 | BG2a2 | BG2a3 | ||
55 Code b | BG2b1 | BG2b2 | BG2b3 | |||
Cement Stabilized Code S | 10 Code 1 | 20 Code a | BS1a1 | BS1a2 | BS1a3 | |
55 Code b | BS1b1 | BS1b2 | BS1b3 | |||
13 Code 2 | 20 Code a | BS2a1 | BS2a2 | BS2a3 | ||
55 Code b | BS2b1 | BS2b2 | BS2b3 | |||
28 Code C | River-run gravel Code G | 10 Code 1 | 20 Code a | CG1a1 | CG1a2 | CG1a3 |
55 Code b | CG1b1 | CG1b2 | CG1b3 | |||
13 Code 2 | 20 Code a | CG2a1 | CG2a2 | CG2a3 | ||
55 Code b | CG2b1 | CG2b2 | CG2b3 | |||
Cement Stabilized Code S | 10 Code 1 | 20 Code a | CS1a1 | CS1a2 | CS1a3 | |
55 Code b | CS1b1 | CS1b2 | CS1b3 | |||
13 Code 2 | 20 Code a | CS1a1 | CS2a2 | CS2a3 | ||
55 Code b | CS2b1 | CS2b2 | CS2a3 |
0% | <1% | 1–10% | 10–50% |
---|---|---|---|
BG1b1 | AS1b1 | AG1b1 | AG1b2 |
BG1b2 | BG1a1 | AG2b1 | AS1a1 |
BG2b1 | BG2b2 | AS1b2 | AS1b3 |
BS1b1 | BS1a1 | AS2b1 | BG1a2 |
BS1b2 | BS2b2 | BG2a1 | BG1b3 |
BS2b1 | CG1a2 | BS1b3 | BS1a2 |
CG1a1 | CG1b3 | BS2a1 | CG2b3 |
CG1b1 | CG2a1 | CG2a2 | CS1a3 |
CG1b2 | CS1a2 | CS2a2 | |
CG2b1 | CS2a1 | ||
CG2b2 | |||
CS1b1 | |||
CS1b2 | |||
CS1b3 | |||
CS2b1 | |||
CS2b2 |
Input Data | Faulting Related to Admissible Value (%) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | ||
Slab thickness (cm) | A | 55.880 | 86.360 | 106.680 | 121.920 | 137.160 | 152.400 | 167.640 |
B | 30.480 | 55.880 | 71.120 | 86.360 | 101.600 | 111.760 | 121.920 | |
C | 25.400 | 45.720 | 60.960 | 71.120 | 86.360 | 96.520 | 106.680 | |
Subbase (cm) | G | 55.880 | 86.360 | 111.760 | 127.000 | 142.240 | 157.480 | 172.720 |
S | 20.320 | 35.560 | 50.800 | 60.960 | 71.120 | 81.280 | 91.440 | |
CTE (10−6/°C) | 10 | 15.240 | 30.480 | 40.640 | 55.880 | 66.040 | 71.120 | 81.280 |
13 | 60.960 | 91.440 | 116.840 | 137.160 | 152.400 | 167.640 | 177.800 | |
Rc (28 days) (MPa) | 20 | 30.480 | 50.800 | 71.120 | 86.360 | 96.520 | 106.680 | 121.920 |
55 | 45.720 | 71.120 | 91.440 | 106.680 | 116.840 | 132.080 | 142.240 | |
Distance between joints (m) | 4 | 15.240 | 30.480 | 45.720 | 55.880 | 66.040 | 76.200 | 86.360 |
6 | 30.480 | 50.800 | 66.040 | 81.280 | 96.520 | 106.680 | 116.840 | |
8 | 66.040 | 101.600 | 127.000 | 147.320 | 162.560 | 172.720 | 187.960 |
Input Data | IRI m/km | |||||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | ||
Pavement thickness (cm) | 18 | 1.66 | 2.13 | 2.50 | 2.84 | 3.29 | 3.55 | 3.78 |
23 | 1.40 | 1.75 | 2.02 | 2.37 | 2.66 | 2.89 | 3.11 | |
28 | 1.35 | 1.57 | 1.81 | 2.04 | 2.30 | 2.51 | 2.70 | |
Sub base (cm) | River-run gravel | 1.58 | 2.00 | 2.32 | 2.65 | 3.03 | 3.27 | 3.50 |
Cement stabilized | 1.36 | 1.63 | 1.90 | 2.19 | 2.47 | 2.69 | 2.90 | |
CTE (10−6/°C) | CTE 10 | 1.27 | 1.56 | 1.83 | 2.10 | 2.38 | 2.60 | 2.80 |
CTE 13 | 1.69 | 2.11 | 2.43 | 2.77 | 3.17 | 3.41 | 3.64 | |
Rc (28 days), MPa | Rc 20 MPa | 1.55 | 1.95 | 2.26 | 2.62 | 2.97 | 3.21 | 3.43 |
Rc 55 MPa | 1.39 | 1.69 | 1.96 | 2.21 | 2.53 | 2.75 | 2.97 | |
Distance between joints (m) | 4 m | 1.28 | 1.57 | 1.86 | 2.15 | 2.44 | 2.67 | 2.89 |
6 m | 1.35 | 1.69 | 1.94 | 2.28 | 2.68 | 2.92 | 3.13 | |
8 m | 1.78 | 2.18 | 2.46 | 2.75 | 3.04 | 3.27 | 3.48 |
95–170 in/miles (1.4994–2.683 m/km) | ||
---|---|---|
AS1b1 | AS1b2 | AS1b3 |
BG1b1 | BG1b2 | BS1b3 |
BS1a1 | BS1a2 | CG1b3 |
BS1b1 | BS1b2 | CS1b3 |
BS2b1 | CG1a2 | |
CG1a1 | CG1b2 | |
CG1b1 | CG2b2 | |
CS1a1 | CS1a2 | |
CS1b1 | CS1b2 | |
CS2b1 | CS2b2 | |
CG2b2 |
Variants | Percentage of Slabs Cracked (<1%) | Faulting (<0.03937 in) (1 mm) | IRI (95–170 in/miles) (1.4994–2.683 m/km)) |
---|---|---|---|
1 | AS1b1 | AS1b1 | AS1b1 |
2 | BS1b1 | BS1b1 | BS1b1 |
3 | CG1a1 | CG1a1 | CG1a1 |
4 | CG1b1 | CG1b1 | CG1b1 |
5 | CS1b1 | CS1b1 | CS1b1 |
6 | CS1b2 | CS1b2 | CS1b2 |
7 | CS1b3 | CS1b3 | CS1b3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleșcan, C.; Pleșcan, E.-L.; Stanciu, M.D.; Botiș, M.; Taus, D. Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study. Symmetry 2021, 13, 168. https://doi.org/10.3390/sym13020168
Pleșcan C, Pleșcan E-L, Stanciu MD, Botiș M, Taus D. Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study. Symmetry. 2021; 13(2):168. https://doi.org/10.3390/sym13020168
Chicago/Turabian StylePleșcan, Costel, Elena-Loredana Pleșcan, Mariana D. Stanciu, Marius Botiș, and Daniel Taus. 2021. "Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study" Symmetry 13, no. 2: 168. https://doi.org/10.3390/sym13020168
APA StylePleșcan, C., Pleșcan, E. -L., Stanciu, M. D., Botiș, M., & Taus, D. (2021). Sensitivity Analysis of Rigid Pavement Design Based on Semi-Empirical Methods: Romanian Case Study. Symmetry, 13(2), 168. https://doi.org/10.3390/sym13020168