On the Trace Anomaly of the Chaudhuri–Choi–Rabinovici Model
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osborn, H. Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories. Nucl. Phys. B 1991, 363, 486. [Google Scholar] [CrossRef]
- Nakayama, Y. Can we change c in four-dimensional CFTs by exactly marginal deformations? JHEP 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, D.; Perlmutter, E. Beyond a = c: Gravitational couplings to matter and the stress tensor OPE. JHEP 2018, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Bzowski, A.; McFadden, P.; Skenderis, K. Renormalised CFT 3-point functions of scalars, currents and stress tensors. JHEP 2018, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Solodukhin, S.N. Logarithmic terms in entropy of Schwarzschild black holes in higher loops. Phys. Lett. B 2020, 802, 135235. [Google Scholar] [CrossRef]
- Niarchos, V.; Papageorgakis, C.; Pomoni, E. Type-B Anomaly Matching and the 6D (2,0) Theory. JHEP 2020, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Niarchos, V.; Papageorgakis, C.; Pini, A.; Pomoni, E. (Mis-)Matching Type-B Anomalies on the Higgs Branch. arXiv 2020, arXiv:2009.08375. [Google Scholar]
- Anselmi, D.; Freedman, D.Z.; Grisaru, M.T.; Johansen, A.A. Nonperturbative formulas for central functions of supersymmetric gauge theories. Nucl. Phys. B 1998, 526, 543. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Choi, C.; Rabinovici, E. Thermal order in large N conformal gauge theories. arXiv 2020, arXiv:2011.13981. [Google Scholar]
- Chai, N.; Chaudhuri, S.; Choi, C.; Komargodski, Z.; Rabinovici, E.; Smolkin, M. Symmetry Breaking at All Temperatures. Phys. Rev. Lett. 2020, 125, 131603. [Google Scholar] [CrossRef] [PubMed]
- Chai, N.; Chaudhuri, S.; Choi, C.; Komargodski, Z.; Rabinovici, E.; Smolkin, M. Thermal Order in Conformal Theories. Phys. Rev. D 2020, 102, 065014. [Google Scholar] [CrossRef]
- Jack, I.; Osborn, H. Background Field Calculations in Curved Space-time. 1. General Formalism and Application to Scalar Fields. Nucl. Phys. B 1984, 234, 331–364. [Google Scholar] [CrossRef]
- Jack, I. Background Field Calculations in Curved Space-Time. II. Application to a Pure Gauge Theory. Nucl. Phys. B 1984, 234, 365–378. [Google Scholar] [CrossRef]
- Jack, I. Background Field Calculations in Curved Space-Time. 3. Application to a General Gauge Theory Coupled to Fermions and Scalars. Nucl. Phys. B 1985, 253, 323–352. [Google Scholar] [CrossRef]
- Osborn, H.; Stergiou, A. CT for non-unitary CFTs in higher dimensions. JHEP 2016, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Komargodski, Z.; Schwimmer, A. On Renormalization Group Flows in Four Dimensions. JHEP 2011, 1112, 99. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y. On the Trace Anomaly of the Chaudhuri–Choi–Rabinovici Model. Symmetry 2021, 13, 276. https://doi.org/10.3390/sym13020276
Nakayama Y. On the Trace Anomaly of the Chaudhuri–Choi–Rabinovici Model. Symmetry. 2021; 13(2):276. https://doi.org/10.3390/sym13020276
Chicago/Turabian StyleNakayama, Yu. 2021. "On the Trace Anomaly of the Chaudhuri–Choi–Rabinovici Model" Symmetry 13, no. 2: 276. https://doi.org/10.3390/sym13020276
APA StyleNakayama, Y. (2021). On the Trace Anomaly of the Chaudhuri–Choi–Rabinovici Model. Symmetry, 13(2), 276. https://doi.org/10.3390/sym13020276