Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials
Abstract
:1. Introduction
2. Preliminaries
2.1. The Classes of Finite Univariate Orthogonal Polynomials
2.1.1. The First Class of Finite Classical Orthogonal Polynomials
2.1.2. The Second Class of Finite Classical Orthogonal Polynomials
2.1.3. The Third Class of Finite Classical Orthogonal Polynomials
2.2. The Classes of Finite Bivariate Orthogonal Polynomials
2.2.1. The First Sequence
2.2.2. The Second Sequence
2.2.3. The Third Sequence
2.2.4. The Fourth Sequence
2.2.5. The Fifth Sequence
2.2.6. The Sixth Sequence
2.2.7. The Seventh Sequence
2.2.8. The Eight Sequence
2.2.9. The Ninth Sequence
2.2.10. The Tenth Sequence
2.2.11. The Eleventh Sequence
2.2.12. The Twelfth Sequence
2.2.13. The Thirteenth Sequence
2.2.14. The Fourteenth Sequence
2.2.15. The Fifteenth Sequence
3. Fourier Transforms for the Set of the Polynomials
3.1. Fourier Transform of the Polynomials
3.2. Fourier Transform of the Polynomials
3.3. Fourier Transform of the Polynomials
3.4. Fourier Transform of the Polynomials
3.5. Fourier Transform of the Polynomials
3.6. Fourier Transform of the Polynomials
3.7. Fourier Transform of the Polynomials
3.8. Fourier Transform of the Polynomials
3.9. Fourier Transform of the Polynomials
3.10. Fourier Transform of the Polynomials
3.11. Fourier Transform of the Polynomials
3.12. Fourier Transform of the Polynomials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, B. Integral Transforms and Their Applications, 3rd ed.; Texts in Applied Mathematics; Springer: New York, NY, USA, 2002; Volume 41. [Google Scholar]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Tranter, C.J. Integral Transforms in Mathematical Physics; Methuen: York, UK, 1971. [Google Scholar]
- Yakubovich, S.B.; Luchko, Y.F. The Hypergeometric Approach to Integral Transforms and Convolutions; Kluwer: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Wang, S. Applications of Fourier Transform to Imaging Analysis. J. R. Stat. Soc. 2007, 171, 1–11. [Google Scholar]
- Srivastava, H.M.; Masjed-Jamei, M.; Aktaş, R. Analytical solutions of some general classes of differential and integral equations by using the Laplace and Fourier transforms. Filomat 2020, 34, 2869–2876. [Google Scholar] [CrossRef]
- Luchko, Y. Some Schemata for Applications of the Integral Transforms of Mathematical Physics. Mathematics 2019, 7, 254. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I. Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries. Front. Phys. 2020, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Skuratov, D.L.; Ratis, Y.L.; Selezneva, I.A.; Perez, J.; Fernandez de Cordoba, P.; Urchueguiac, J.F. Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl. Math. Model. 2007, 31, 1039–1047. [Google Scholar] [CrossRef]
- Chowning, J.M. The synthesis of complex audio spectra by means of frequency modulation. J. Audio Eng. Soc. 1973, 21, 526–534. [Google Scholar]
- Brandenburg, K.; Bosi, M. Overview of MPEG audio: Current and future standards for low-bit-rate audio coding. J. Audio Eng. Soc. 1997, 45, 4–21. [Google Scholar]
- Bosi, M.; Goldberg, R.E. Introduction to Digital Audio Coding and Standards; Kluwer Academic Publishers: Boston, MA, USA, 2003. [Google Scholar]
- Kailath, T.; Sayed, A.H.; Hassibi, B. Linear Estimation; PrenticeHall, Inc.: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- Gray, R.M.; Davisson, L.D. An Introduction to Statistical Signal Processing; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Koepf, W.; Masjed-Jamei, M. A generic polynomial solution for the differential equation of hypergeometric type and six sequences of orthogonal polynomials related to it. Integral Transform. Spec. Funct. 2006, 17, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Bochner, S. Uber Sturm-Liouvillesche Polynomsysteme. Math. Z. 1929, 29, 730–736. [Google Scholar] [CrossRef]
- Masjed-Jamei, M. Classical orthogonal polynomials with weight function and a generalization of T and F distributions. Integral Transform. Spec. Funct. 2004, 15, 137–153. [Google Scholar]
- Masjed-Jamei, M. Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transform. Spec. Funct. 2002, 13, 169–191. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume II. [Google Scholar]
- Koelink, H.T. On Jacobi and continuous Hahn polynomials. Proc. Am. Math. Soc. 1996, 124, 887–898. [Google Scholar] [CrossRef]
- Koepf, W.; Masjed-Jamei, M. Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials. Proc. Am. Math. Soc. 2007, 135, 3599–3606. [Google Scholar] [CrossRef] [Green Version]
- Koornwinder, T.H. Group theoretic interpretations of Askey’s scheme of hypergeometric orthogonal polynomials. In Orthogonal Polynomials and Their Applications; Segovia, 1986; Lecture Notes in Math.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 1329, pp. 46–72. [Google Scholar]
- Koornwinder, T.H. Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform. In Orthogonal Polynomials and Applications; Bar-le-Duc, 1984; Lecture Notes in Math.; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1171, pp. 174–183. [Google Scholar]
- Masjed-Jamei, M.; Koepf, W. Two classes of special functions using Fourier transforms of generalized ultraspherical and generalized Hermite polynomials. Proc. Am. Math. Soc. 2012, 140, 2053–2063. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Marcellán, F.; Huertas, E.J. A finite class of orthogonal functions generated by Routh-Romanovski polynomials. Complex Var. Elliptic Eq. 2014, 59, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Koepf, W. Two finite classes of orthogonal functions. Appl. Anal. 2013, 92, 2392–2403. [Google Scholar] [CrossRef] [Green Version]
- Güldoğan, E.; Aktaş, R.; Area, I. Some classes of special functions using Fourier transforms of some two-variable orthogonal polynomials. Integral Transform. Spec. Funct. 2020, 31, 437–470. [Google Scholar] [CrossRef]
- Koornwinder, T.H. Two-variable analogues of the classical orthogonal polynomials. In Theory and Application of Special Functions; Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; Academic Press: New York, NY, USA, 1975; pp. 435–495, Math. Res. Center, Univ. Wisconsin, Publ. No. 35. [Google Scholar]
- Fernández, L.; Pérez, T.E.; Piñar, M.A. On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 2012, 236, 3817–3826. [Google Scholar] [CrossRef] [Green Version]
- Güldoğan, E.; Aktaş, R.; Masjed-Jamei, M. On finite classes of two-variable orthogonal polynomials. Bull. Iran. Math. Soc. 2020, 46, 1163–1194. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; John Wiley & Sons, Inc.: New York, NY, USA, 1984; A Wiley-Interscience Publication; reprint of the 1972 edition. [Google Scholar]
- Titchmarsh, E.C. Introduction to the Theory of Fourier Integrals, 3rd ed.; Chelsea Publishing Co.: New York, NY, USA, 1986. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güldoğan Lekesiz, E.; Aktaş, R.; Masjed-Jamei, M. Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials. Symmetry 2021, 13, 452. https://doi.org/10.3390/sym13030452
Güldoğan Lekesiz E, Aktaş R, Masjed-Jamei M. Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials. Symmetry. 2021; 13(3):452. https://doi.org/10.3390/sym13030452
Chicago/Turabian StyleGüldoğan Lekesiz, Esra, Rabia Aktaş, and Mohammad Masjed-Jamei. 2021. "Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials" Symmetry 13, no. 3: 452. https://doi.org/10.3390/sym13030452
APA StyleGüldoğan Lekesiz, E., Aktaş, R., & Masjed-Jamei, M. (2021). Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials. Symmetry, 13(3), 452. https://doi.org/10.3390/sym13030452