Applications of Generalized q-Difference Equations for General q-Polynomials
Abstract
:1. Introduction and Motivation
- (A)
- f can be expanded in terms of if and only if f satisfies the functional equation
- (B)
- f can be expanded in terms of if and only if f satisfies the functional equation
2. A Main Result
3. Generating Function for the Generalized -Polynomials
4. A Mixed Generating Function for the Generalized -Polynomials
5. A Multilinear Generating Function for the Generalized -Polynomials
6. A Transformation Identity Involving Hecke-Type Series for the Generalized -Polynomials
7. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E. q-Orthogonal polynomials, Rogers-Ramanujan identities and mock theta function. Proc. Steklov Inst. Math. 2012, 276, 21–32. [Google Scholar] [CrossRef]
- Andrews, G.E. Parity in partition identities. Ramanujan J. 2010, 23, 45–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. New Proofs of Ramanujan’s Identities on False Theta Functions. Ramanujan J. 2019, 50, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yee, A.J. Some Hecke-Rogers type identities. Adv. Math. 2019, 349, 733–748. [Google Scholar] [CrossRef]
- Wang, C.; Chern, S. Some q-transformation formulas and Hecke type identities. Int. J. Number Theory 2019, 15, 1349–1367. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, H. Some further Hecke-type identities. Int. J. Number Theory 2020, 2, 1–23. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Ali, B.K.I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Srivastava, H.M.; Agarwal, A.K. Generating functions for a class of q-polynomials. Ann. Mat. Pura Appl. 1989, 154, 99–109. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Khan, B.; Agarwal, P.; Hu, Q.; Wang, X. Two New Bailey Lattices and Their Applications. Symmetry 2021, 13, 958. [Google Scholar] [CrossRef]
- Jia, Z. Homogeneous q-difference Equations and Generating Functions for the Generalized 2D-Hermite Polynomials. Taiwanese J. Math. 2021, 25, 45–63. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Cao, J.; Arjika, S. A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 2020, 12, 1816. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge Univ. Press: Cambridge, UK, 2004. [Google Scholar]
- Verma, A. On identities of Rogers-Ramanujan type. Indian J. Pure Appl. Math. 1980, 11, 770–790. [Google Scholar]
- Liu, Z.-G. On the q-partial differential equations and q-series. arXiv 2013, arXiv:1805.02132. [Google Scholar]
- Al-Salam, W.A.; Carlitz, L. Some orthogonal q-polynomials. Math. Nachr. 1965, 30, 47–61. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Fu, A.M.; Zhang, B.Y. The Homongenous q-difference operator. Adv. Appl. Math. 2003, 31, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Cigler, J. Operator methods for q-identities. Monstsh. Math. 1979, 88, 87–105. [Google Scholar] [CrossRef]
- Cao, J.; Niu, D.W. A note on q-difference equations for cigler’s polynomials. J. Differ. Equ. Appl. 2016, 22, 47–72. [Google Scholar] [CrossRef]
- Liu, Z.-G. Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 2010, 16, 1293–1307. [Google Scholar] [CrossRef]
- Cao, J. Homongenous q-difference equations and generating fucntion for q-hypergeometric polynomials. Ramanujan J. 2016, 40, 177–192. [Google Scholar] [CrossRef]
- Cao, J.; Xu, B.; Arjika, S. A note on generalized q-difference equations for general Al-Salam–Carlitz polynomials. Adv. Differ. Equ. 2020, 668, 1–17. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter Augmentation for Basic Hypergeometric Series; Sagan, I.B.E., Stanley, R.P., Eds.; Mathematical Essays in Honor of Gian-Carlo Rota; BirkUauser: Basel, Switzerland, 1998; pp. 111–129. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series, II. J. Combin. Theory Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.C.; Gu, N.S.S. The Cauchy operator for basic hepergeometric series. Adv. Math. 2008, 41, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. Some operator identities and q-series transformation formulas. Discret. Math. 2003, 265, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G.; Zeng, J. Two expansion formulas involving the Rogers-Szego¨ polynomials with applications. Int. J. Number Theory 2015, 11, 507–525. [Google Scholar] [CrossRef]
- Jia, Z.; Zeng, J. Expansions in Askey-Wilson polynomials via Bailey transform. J. Math. Anal. Appl. 2017, 452, 1082–1100. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Khan, B.; Hu, Q.; Niu, D. Applications of Generalized q-Difference Equations for General q-Polynomials. Symmetry 2021, 13, 1222. https://doi.org/10.3390/sym13071222
Jia Z, Khan B, Hu Q, Niu D. Applications of Generalized q-Difference Equations for General q-Polynomials. Symmetry. 2021; 13(7):1222. https://doi.org/10.3390/sym13071222
Chicago/Turabian StyleJia, Zeya, Bilal Khan, Qiuxia Hu, and Dawei Niu. 2021. "Applications of Generalized q-Difference Equations for General q-Polynomials" Symmetry 13, no. 7: 1222. https://doi.org/10.3390/sym13071222
APA StyleJia, Z., Khan, B., Hu, Q., & Niu, D. (2021). Applications of Generalized q-Difference Equations for General q-Polynomials. Symmetry, 13(7), 1222. https://doi.org/10.3390/sym13071222