Wilsonian Effective Action and Entanglement Entropy
Abstract
:1. Introduction
2. Summary of Previous Works
2.1. Gauge Theory on Feynman Diagrams
2.2. Propagator Contributions to EE
2.3. Vertex Contributions to EE and Generalized 1PI
3. General Vertex Contributions to EE
3.1. Scalar Field Theory
3.2. Theory and Further Generalizations
3.3. Derivative Interactions
4. IR Behavior of EE and Wilsonian Effective Action
4.1. More Properties of Vertex Contributions to EE
4.2. Wilsonian RG and EE: Free Field Theories
4.3. Wilsonian RG and EE: Interacting Field Theories
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Area Laws for Rényi Entropy and Entanglement Capacity
Appendix B. Proof of the EE Formulae of the Vertex Contributions
References
- Calabrese, P.; Cardy, J.L. Entanglement entropy and quantum field theory. J. Stat. Mech. 2004, 0406, P06002. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, P.; Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A 2009, 42, 504005. [Google Scholar] [CrossRef]
- Ruggiero, P.; Tonni, E.; Calabrese, P. Entanglement entropy of two disjoint intervals and the recursion formula for conformal blocks. J. Stat. Mech. 2018, 1811, 113101. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.Y.; Myers, R.C.; Smolkin, M. Twist operators in higher dimensions. J. High Energy Phys. 2014, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Casini, H.; Huerta, M. Entanglement entropy for the n-sphere. Phys. Lett. B 2010, 694, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Rosenhaus, V.; Smolkin, M. Entanglement Entropy for Relevant and Geometric Perturbations. J. High Energy Phys. 2015, 2, 15. [Google Scholar] [CrossRef]
- Rosenhaus, V.; Smolkin, M. Entanglement Entropy: A Perturbative Calculation. J. High Energy Phys. 2014, 12, 179. [Google Scholar] [CrossRef] [Green Version]
- Rosenhaus, V.; Smolkin, M. Entanglement entropy, planar surfaces, and spectral functions. J. High Energy Phys. 2014, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Takayanagi, T. Aspects of Holographic Entanglement Entropy. J. High Energy Phys. 2006, 8, 045. [Google Scholar] [CrossRef] [Green Version]
- Hubeny, V.E.; Rangamani, M.; Takayanagi, T. A Covariant holographic entanglement entropy proposal. J. High Energy Phys. 2007, 07, 062. [Google Scholar] [CrossRef]
- Nishioka, T.; Ryu, S.; Takayanagi, T. Holographic Entanglement Entropy: An Overview. J. Phys. A 2009, 42, 504008. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, T. Entanglement entropy: Holography and renormalization group. Rev. Mod. Phys. 2018, 90, 035007. [Google Scholar] [CrossRef] [Green Version]
- Casini, H.; Huerta, M. Entanglement entropy in free quantum field theory. J. Phys. A Math. Theor. 2009, 42, 504007. [Google Scholar] [CrossRef]
- Botero, A.; Reznik, B. Spatial structures and localization of vacuum entanglement in the linear harmonic chain. Phys. Rev. A 2004, 70, 052329. [Google Scholar] [CrossRef] [Green Version]
- Katsinis, D.; Pastras, G. An Inverse Mass Expansion for Entanglement Entropy in Free Massive Scalar Field Theory. Eur. Phys. J. C 2018, 78, 282. [Google Scholar] [CrossRef]
- Bianchi, E.; Satz, A. Entropy of a subalgebra of observables and the geometric entanglement entropy. Phys. Rev. D 2019, 99, 085001. [Google Scholar] [CrossRef] [Green Version]
- Lewkowycz, A.; Myers, R.C.; Smolkin, M. Observations on entanglement entropy in massive QFT’s. J. High Energy Phys. 2013, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Herzog, C.P.; Nishioka, T. Entanglement Entropy of a Massive Fermion on a Torus. J. High Energy Phys. 2013, 3, 77. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, W.; Timmerman, S.; Valdés-Meller, N. Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory. J. High Energy Phys. 2020, 4, 182. [Google Scholar] [CrossRef]
- Jafferis, D.L.; Klebanov, I.R.; Pufu, S.S.; Safdi, B.R. Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere. J. High Energy Phys. 2011, 06, 102. [Google Scholar] [CrossRef] [Green Version]
- Pufu, S.S. The F-Theorem and F-Maximization. J. Phys. A 2017, 50, 443008. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, T.; Yaakov, I. Supersymmetric Renyi Entropy. J. High Energy Phys. 2013, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P. Entanglement Entropy in Scalar Field Theory. J. Phys. A 2013, 46, 015402. [Google Scholar] [CrossRef]
- Chen, Y.; Hackl, L.; Kunjwal, R.; Moradi, H.; Yazdi, Y.K.; Zilhão, M. Towards spacetime entanglement entropy for interacting theories. J. High Energy Phys. 2020, 11, 114. [Google Scholar] [CrossRef]
- Metlitski, M.A.; Fuertes, C.A.; Sachdev, S. Entanglement entropy in the O(N) model. Phys. Rev. B 2009, 80, 115122. [Google Scholar] [CrossRef] [Green Version]
- Akers, C.; Ben-Ami, O.; Rosenhaus, V.; Smolkin, M.; Yankielowicz, S. Entanglement and RG in the O(N) vector model. J. High Energy Phys. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Cotler, J.; Mueller, M.T. Entanglement Entropy and Variational Methods: Interacting Scalar Fields. Ann. Phys. 2016, 365, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Melgarejo, J.J.; Molina-Vilaplana, J. Entanglement Entropy: Non-Gaussian States and Strong Coupling. J. High Energy Phys. 2021, 2, 106. [Google Scholar] [CrossRef]
- Fernández-Melgarejo, J.J.; Molina-Vilaplana, J. On the Entanglement Entropy in Gaussian cMERA. arXiv 2021, arXiv:2104.01551. [Google Scholar]
- Whitsitt, S.; Witczak-Krempa, W.; Sachdev, S. Entanglement entropy of the large N Wilson-Fisher conformal field theory. Phys. Rev. B 2017, 95, 045148. [Google Scholar] [CrossRef] [Green Version]
- Hampapura, H.R.; Lawrence, A.; Stanojevic, S. Phase transitions in the Rényi entropies of a 2 + 1D large-N interacting vector model. Phys. Rev. B 2019, 100, 134412. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Troyer, M. Renyi Entanglement Entropy of Interacting Fermions Calculated Using the Continuous-Time Quantum Monte Carlo Method. Phys. Rev. Lett. 2014, 113, 110401. [Google Scholar] [CrossRef] [Green Version]
- Buividovich, P.V.; Polikarpov, M.I. Numerical study of entanglement entropy in SU(2) lattice gauge theory. Nucl. Phys. B 2008, 802, 458–474. [Google Scholar] [CrossRef] [Green Version]
- Buividovich, P.V.; Polikarpov, M.I. Entanglement entropy in gauge theories and the holographic principle for electric strings. Phys. Lett. B 2008, 670, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Itou, E.; Nagata, K.; Nakagawa, Y.; Nakamura, A.; Zakharov, V.I. Entanglement in Four-Dimensional SU(3) Gauge Theory. Prog. Theor. Exp. Phys. 2016, 2016, 061B01. [Google Scholar] [CrossRef] [Green Version]
- Rabenstein, A.; Bodendorfer, N.; Buividovich, P.; Schäfer, A. Lattice study of Rényi entanglement entropy in SU(Nc) lattice Yang-Mills theory with Nc = 2, 3, 4. Phys. Rev. D 2019, 100, 034504. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B 1971, 4, 3174–3183. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior. Phys. Rev. B 1971, 4, 3184–3205. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G.; Kogut, J.B. The Renormalization group and the epsilon expansion. Phys. Rept. 1974, 12, 75–199. [Google Scholar] [CrossRef]
- Polchinski, J. Renormalization and Effective Lagrangians. Nucl. Phys. B 1984, 231, 269–295. [Google Scholar] [CrossRef]
- Iso, S.; Mori, T.; Sakai, K. Entanglement entropy in scalar field theory and ZM gauge theory on Feynman diagrams. Phys. Rev. D 2021, 103, 105010. [Google Scholar] [CrossRef]
- Iso, S.; Mori, T.; Sakai, K. Non-Gaussianity of entanglement entropy and correlations of composite operators. Phys. Rev. D 2021, 103, 125019. [Google Scholar] [CrossRef]
- Yao, H.; Qi, X.L. Entanglement Entropy and Entanglement Spectrum of the Kitaev Model. Phys. Rev. Lett. 2010, 105, 080501. [Google Scholar] [CrossRef] [Green Version]
- De Boer, J.; Järvelä, J.; Keski-Vakkuri, E. Aspects of capacity of entanglement. Phys. Rev. D 2019, 99, 066012. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, T.; Takayanagi, T. AdS bubbles, entropy and closed string tachyons. J. High Energy Phys. 2007, 2007, 090. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Numasawa, T.; Takayanagi, T.; Watanabe, K. Notes on Entanglement Entropy in String Theory. J. High Energy Phys. 2015, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.R. The Exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 1994, 9, 2411–2450. [Google Scholar] [CrossRef] [Green Version]
- Iso, S.; Mori, T.; Sakai, K. KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; 2021; Manuscript in Preparation. [Google Scholar]
- Fernandez-Melgarejo, J.J.; Molina-Vilaplana, J. Non-Gaussian Entanglement Renormalization for Quantum Fields. J. High Energy Phys. 2020, 7, 149. [Google Scholar] [CrossRef]
- Eisert, J.; Cramer, M.; Plenio, M.B. Area laws for the entanglement entropy—A review. Rev. Mod. Phys. 2010, 82, 277–306. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K. Probing Hawking radiation through capacity of entanglement. J. High Energy Phys. 2021, 05, 062. [Google Scholar] [CrossRef]
- Okuyama, K. Capacity of entanglement in random pure state. arXiv 2021, arXiv:2103.08909. [Google Scholar]
- Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K. Replica wormholes and capacity of entanglement. arXiv 2021, arXiv:2105.08396. [Google Scholar]
- Hastings, M.B. An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, 0708, P08024. [Google Scholar] [CrossRef]
- Bueno, P.; Casini, H.; Witczak-Krempa, W. Generalizing the entanglement entropy of singular regions in conformal field theories. J. High Energy Phys. 2019, 08, 069. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, N.; Takayanagi, T.; Ugajin, T. Holographic Fermi Surfaces and Entanglement Entropy. J. High Energy Phys. 2012, 1, 125. [Google Scholar] [CrossRef] [Green Version]
- Shiba, N.; Takayanagi, T. Volume Law for the Entanglement Entropy in Non-local QFTs. J. High Energy Phys. 2014, 2, 033. [Google Scholar] [CrossRef] [Green Version]
- Vitagliano, G.; Riera, A.; Latorre, J.I. Violation of area-law scaling for the entanglement entropy in spin 1/2 chains. New J. Phys. 2010, 12, 113049. [Google Scholar] [CrossRef]
- Ramírez, G.; Rodríguez-Laguna, J.; Sierra, G. From conformal to volume law for the entanglement entropy in exponentially deformed critical spin 1/2 chains. J. Stat. Mech. Theory Exp. 2014, 2014, P10004. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Magan, J.M.; Vandoren, S. Entanglement Entropy in Lifshitz Theories. SciPost Phys. 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi Mozaffar, M.R.; Mollabashi, A. Entanglement in Lifshitz-type Quantum Field Theories. J. High Energy Phys. 2017, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Gentle, S.A.; Vandoren, S. Lifshitz entanglement entropy from holographic cMERA. J. High Energy Phys. 2018, 7, 013. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iso, S.; Mori, T.; Sakai, K. Wilsonian Effective Action and Entanglement Entropy. Symmetry 2021, 13, 1221. https://doi.org/10.3390/sym13071221
Iso S, Mori T, Sakai K. Wilsonian Effective Action and Entanglement Entropy. Symmetry. 2021; 13(7):1221. https://doi.org/10.3390/sym13071221
Chicago/Turabian StyleIso, Satoshi, Takato Mori, and Katsuta Sakai. 2021. "Wilsonian Effective Action and Entanglement Entropy" Symmetry 13, no. 7: 1221. https://doi.org/10.3390/sym13071221
APA StyleIso, S., Mori, T., & Sakai, K. (2021). Wilsonian Effective Action and Entanglement Entropy. Symmetry, 13(7), 1221. https://doi.org/10.3390/sym13071221