Perturbative and Non-Pertrubative Trace Anomalies
Abstract
:1. Introduction
2. Even Parity Trace Anomalies due to Vector Gauge Field
2.1. The First Correlator
2.2. The Conformal Ward Identity
2.3. The 2-Point Current Correlator
2.4. The Second Correlator
2.5. Diffeomorphisms Are Conserved
3. The Seeley–DeWitt Approach
4. The Case of a Right-Handed Weyl Fermion. Odd Parity
5. A Heat-Kernel Derivation. The SDW Method for Weyl Fermions
5.1. The Consistent Chiral Anomaly via SDW
5.2. The Odd Trace Anomaly via SDW
6. Anomalies and Diffeomorphisms
6.1. The Amplitude
6.2. The Amplitude
6.3. The Amplitude
6.4. The Amplitudes and
7. Conclusions
A Discussion about
- Possible soft terms that classically violate conformal invariance;
- The term in the modified definition of the em tensor;
- The semilocal terms in the conformal WI;
- Possible off-shell contributions to the anomaly: contrary to the example above where □ applied to the argument yields 0 for , the derivative with respect to contracted with , or the derivative with respect to , do not automatically vanish off-shell. In fact the operator identically vanish on-shell, therefore its contribution can only be off-shell. This means that in Formula (105), the off-shell contributions to the anomaly are subtracted away. In other words, the trace anomaly (105) receives only on-shell contributions.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Even Gauge Current Correlators
Appendix A.1. A Preliminary Calculation
Appendix A.2. Even Part of 〈∂·j R j R j R 〉
Appendix A.3. Even Part of 〈∂·jjj〉
Appendix A.4. Even Part of 〈∂·jj 5 j 5 〉
Appendix A.5. Even Part of 〈∂·j 5 jj 5 〉 and 〈∂·j 5 j 5 j〉
Appendix A.6. Result in Coordinate Space
Appendix B. Perturbative Cohomology
References
- Capper, D.M.; Duff, M.J. Trace Anomalies in Dimensional Regularization. Nuovo Cim. 1974, 23A, 173. [Google Scholar] [CrossRef]
- Capper, D.M.; Duff, M.J. Conformal anomalies and the renormalizability problem in quantum gravity. Phys. Lett. A 1975, 53, 361. [Google Scholar] [CrossRef]
- Deser, S.; Duff, M.J.; Isham, C.J. Non-local conformal anomalies. Nucl. Phys. B 1976, 111, 45. [Google Scholar] [CrossRef]
- Bernard, C.; Duncan, A. Regularization and renormalization of quantum field theory in curved space-time. Ann. Phys. 1977, 107, 201. [Google Scholar] [CrossRef]
- Brown, L.S. Stress-tensor trace anomaly in a gravitational metric: Scalar fields. Phys. Rev. D 1977, 15, 1469. [Google Scholar] [CrossRef]
- Brow, L.S.; Cassidy, J.P. Stress-tensor trace anomaly in a gravitational metric: General theory, Maxwell field. Phys. Rev. D 1977, 15, 2810. [Google Scholar] [CrossRef]
- Brow, L.S.; Cassidy, J.P. Stress tensors and their trace anomalies in conformally flat space-time. Phys. Rev. D 1977, 16, 1712. [Google Scholar] [CrossRef]
- Christensen, S.M. Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point-separation method. Phys. Rev. D 1976, 14, 2490. [Google Scholar] [CrossRef]
- Adler, S.L.; Lieberman, J.; Ng, Y.J. Regularization of the stress-energy tensor for vector and scalar particles propagating in a general background metric. Ann. Phys. 1977, 106, 209. [Google Scholar] [CrossRef]
- Duff, M.J. Observations on conformal anomalies. Nucl. Phys. B 1977, 125, 334. [Google Scholar] [CrossRef]
- Dowker, J.S.; Critchley, R. Stress-tensor conformal anomaly for scalar, spinor, and vector fields. Phys. Rev. D 1977, 16, 3390. [Google Scholar] [CrossRef]
- Tsao, H.-S. Conformal anomaly in a general background metric. Phys. Lett. B 1977, 68, 79. [Google Scholar] [CrossRef]
- Christensen, S.M.; Duff, M.J. Axial and conformal anomalies for arbitrary spin in gravity and supergravity. Phys. Lett. B 1978, 76, 571. [Google Scholar] [CrossRef]
- Vilenkin, A. Pauli-Villars Regularization and Trace Anomalies. Nuovo Cim. A 1978, 44, 441. [Google Scholar] [CrossRef]
- Wald, R.M. Axiomatic renormalization of the stress tensor of a conformally invariant field in conformally flat spacetimes. Ann. Phys. 1978, 110, 472. [Google Scholar] [CrossRef]
- Wald, R.M. Trace anomaly of a conformally invariant quantum field in curved spacetime. Phys. Rev. D 1978, 17, 1477. [Google Scholar] [CrossRef]
- Christensen, S.M.; Duff, M.J. New gravitational index theorems and super theorems. Nucl. Phys. B 1979, 154, 301. [Google Scholar] [CrossRef]
- Duff, M.J.; van Nieuwenhuizen, P. Quantum inequivalence of different field representations. Phys. Lett. B 1980, 94, 179. [Google Scholar] [CrossRef]
- Bonora, L.; Pasti, P.; Tonin, M. Weyl cocycles. Class. Quantum Grav. 1986, 3, 635. [Google Scholar] [CrossRef]
- Bonora, L.; Pasti, P.; Tonin, M. The anomaly structure of theories with external gravity. J. Math. Phys. 1986, 27, 2259. [Google Scholar] [CrossRef]
- Eguchi, T.; Freund, P.G.O. Qauntum Gravity and World Topology. Phys. Rev. Lett. 1976, 37, 1251. [Google Scholar] [CrossRef]
- Parker, L. Aspects of Quantum Field Theory in Curved Space-Time: Effective Action and Energy Momentum Tensor. In Recent Developments in Gravitation; Springe: Boston, MA, USA, 1979; pp. 219–273. [Google Scholar]
- Duff, M.J. Twenty years of the Weyl anomaly. Class. Quant. Grav. 1994, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Duff, M.J. Weyl, Pontryagin, Euler, Eguchi and Freund. J. Phys. A 2020, 53, 301001. [Google Scholar] [CrossRef]
- Bonora, L.; Soldati, R. On the trace anomaly for Weyl fermions. arXiv 2019, arXiv:1909.11991. [Google Scholar]
- DeWitt, B.S. Dynamical Theory of Groups and Fields; Gordon and Breach: New York, NY, USA, 1965. [Google Scholar]
- Seeley, R.T. Complex powers of an elliptic operator. Proc. Sympos. Pure Math. 1967, 288–307. [Google Scholar] [CrossRef]
- Seeley, R.T. The resolvent of an elliptic boundary value problem. Am. J. Math. 1969, 91, 889–920. [Google Scholar] [CrossRef]
- Hawking, S.W. Zeta function regularization of path integrals in curved space-time. Commun. Math. Phys. 1977, 55, 133–162. [Google Scholar] [CrossRef]
- Kirsten, K. Heat kernel asymptotics: More special case calculations. Nucl. Phys. B Proc. Suppl. 2002, 104, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Vassilevich, D.V. Heat kernel expansion: User’s manual. Phys. Rep. 2003, 388, 279–360. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, B.S. Global Approach to Quantum Field Theory; Oxford University Press: Oxford, UK, 2003; Volumes I and II. [Google Scholar]
- Bonora, L.; Soldati, R.; Zalel, S. Dirac, Majorana, Weyl in 4d. Universe 2020, 6, 111. [Google Scholar] [CrossRef]
- Bonora, L.; Cvitan, M.; Prester, P.D.; Pereira, A.D.; Giaccari, S.; Štemberga, T. Axial gravity, massless fermions and trace anomalies. Eur. Phys. J. C 2017, 77, 511. [Google Scholar] [CrossRef]
- Bonora, L.; Cvitan, M.; Prester, P.D.; Giaccari, S.; Paulisic, M.; Stemberga, T. Axial gravity: A non-perturbative approach to split anomalies. Eur. Phys. J. C 2018, 78, 652. [Google Scholar] [CrossRef] [Green Version]
- Bonora, L.; Giaccari, S.; de Souza, B.L. Trace anomalies in chiral theories revisited. JHEP 2014, 1407, 117. [Google Scholar] [CrossRef] [Green Version]
- Bonora, L.; Pereira, A.D.; de Souza, B.L. Regularization of energy-momentum tensor correlators and parity-odd terms. JHEP 2015, 1506, 024. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T. Divergence of Axial-Vector Current in the Gravitational Field. Prog. Theor. Phys. 1969, 42, 1191. [Google Scholar] [CrossRef] [Green Version]
- Delbourgo, R.; Salam, A. PCAC Anomalies and Gravitation; International Centre for Theoretical Physics: Trieste, Italy, 1972. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonora, L. Perturbative and Non-Pertrubative Trace Anomalies. Symmetry 2021, 13, 1292. https://doi.org/10.3390/sym13071292
Bonora L. Perturbative and Non-Pertrubative Trace Anomalies. Symmetry. 2021; 13(7):1292. https://doi.org/10.3390/sym13071292
Chicago/Turabian StyleBonora, Loriano. 2021. "Perturbative and Non-Pertrubative Trace Anomalies" Symmetry 13, no. 7: 1292. https://doi.org/10.3390/sym13071292
APA StyleBonora, L. (2021). Perturbative and Non-Pertrubative Trace Anomalies. Symmetry, 13(7), 1292. https://doi.org/10.3390/sym13071292