On Present Value Evaluation under the Impact of Behavioural Factors Using Oriented Fuzzy Numbers
Abstract
:1. Introduction
2. Behavioural Essence of Present Value
- the receivables are discounted by a higher discount rate than liabilities and
- smaller amounts are discounted by a lower discount rate than large amounts.
3. Oriented Fuzzy Numbers—Basic Facts
- FN is represented by its membership function
- FN is represented by its membership function
4. Oriented Fuzzy Present Value
- is a quoted price,
- is an interval of all possible values of PV,
- is an interval of all prices which do not noticeably differ from a quoted price .
5. Behavioural Present Value
6. Interval Representation of Behavioural Present Value
- Pmin the minimal PPV expected under the financial equilibrium condition (32),
- the maximal PPV expected under the financial equilibrium condition (32).
- the minimal PPV expected for the quoted price ,
- the maximal PPV expected for the quoted price .
- a quoted price,
- a balanced price,
- the minimal PPV expected under financial equilibrium condition (32),
- the maximal PPV expected under financial equilibrium condition (32),
- a sentiment index.
- minimal PPV is ,
- maximal PPV is .
7. Fuzzy Representation of Behavioural Present Value
- if the disequilibrium condition (30) is met, then rationale excludes the decrease in a quotation;
- if the disequilibrium condition (31) is met, then rationale excludes the increase in a quotation; and
- if the equilibrium condition (32) is met, then rationale cannot exclude any future quotation.
8. Behavioural Present Value Represented by Oriented Fuzzy Numbers
- all overvalued assets have identical BPV graphs,
- all fully valued assets have identical BPV graphs,
- all undervalued assets have identical BPV graphs.
9. Oriented Expected Return Determined by Behavioural Present Value
- Predicted FV ,
- Evaluated PV .
- If O-BPV describes a subjective belief about rise in quotations, then we can anticipate a decline in the expected return rate.
- If O-BPV describes a subjective belief about fall in quotations, then we can anticipate an upturn in the expected return rate.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piasecki, K. Basis of Financial Arithmetic from the Viewpoint of the Utility Theory. Oper. Res. Decis. 2012, 22, 37–53. [Google Scholar]
- Dubois, D.; Prade, H. Operations on Fuzzy Numbers. Int. J. Syst. Sci. 1978, 9, 613–629. [Google Scholar] [CrossRef]
- Ward, T.L. Discounted Fuzzy Cash Flow Analysis. Fall Ind. Eng. Conf. Proc. 1985, 476, 481. [Google Scholar]
- Buckley, J.J. The Fuzzy Mathematics of Finance. Fuzzy Sets Syst. 1987, 21, 257–273. [Google Scholar] [CrossRef]
- Greenhut, J.G.; Norman, G.; Temponi, C.T. Towards a Fuzzy Theory of Oligopolistic Competition. In Proceedings of the 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, College Park, MD, USA, 17–20 September 1995; IEEE: College Park, MD, USA; pp. 286–291. [Google Scholar]
- Sheen, J.N. Fuzzy Financial Profitability Analyses of Demand Side Management Alternatives from Participant Perspective. Inf. Sci. 2005, 169, 329–364. [Google Scholar] [CrossRef]
- Gutierez, I. Fuzzy Numbers and Net Present Value. Scand. J. Mgmt. 1989, 5, 149–159. [Google Scholar] [CrossRef]
- Kuchta, D. Fuzzy Capital Budgeting. Fuzzy Sets Syst. 2000, 111, 367–385. [Google Scholar] [CrossRef]
- Lesage, C. Discounted Cash-flows Analysis. An Interactive Fuzzy Arithmetic Approach. Eur. J. Econ. Soc. Syst. 2001, 15, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Huang, X. Two New Models for Portfolio Selection with Stochastic Returns Taking Fuzzy Information. Eur. J. Oper. Res. 2007, 180, 396–405. [Google Scholar] [CrossRef]
- Tsao, C.T. Assessing the Probabilistic Fuzzy Net Present Value for a Capital, Investment Choice Using Fuzzy Arithmetic. J. Chin. Ins. Ind. Eng. 2005, 22, 106–118. [Google Scholar] [CrossRef]
- Calzi, M.L. Towards a General Setting for the Fuzzy Mathematics of Finance. Fuzzy Sets Syst. 1990, 35, 265–280. [Google Scholar] [CrossRef]
- Piasecki, K. Behavioural Present Value. SSRN Electron. J. 2011, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Baerecke, T.; Bouchon-Meunier, B.; Detyniecki, M. Fuzzy Present Value. In Proceedings of the 2011 IEEE Computational Intelligence for Financial Engineering and Economics, Paris, France, 11–15 April 2011; IEEE Symposium: Paris, France, 2011; pp. 1–6. [Google Scholar]
- Biswas, P.; Pramanik, S. Fuzzy Approach to Replacement Problem with Value of Money Changes with Time. Int. J. Comput. Appl. 2011, 30, 28–33. [Google Scholar] [CrossRef]
- Nosratpour, M.; Nazeri, A.; Meftahi, H. Fuzzy Net Present Value for Engineering Analysis. Manag. Sci. Lett. 2012, 2, 2153–2158. [Google Scholar] [CrossRef]
- Piasecki, K. Effectiveness of Securities with Fuzzy Probabilistic Return. Oper. Res. Decis. 2011, 21, 65–78. [Google Scholar]
- Piasecki, K. On Imprecise Investment Recommendations. Stud. Log. Gramm. Rhetor. 2014, 37, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Quin, Z.; Kar, S. Mean-Variance-Skewness Model for Portfolio Selection with Fuzzy Returns. Eur. J. Oper. Res. 2010, 202, 239–247. [Google Scholar] [CrossRef]
- Quin, Z.; Wen, M.; Gu, C. Mean-absolute Deviation Portfolio Selection Model with Fuzzy Returns. Iran. J. Fuzzy Syst. 2011, 8, 61–75. [Google Scholar]
- Tsaur, R. Fuzzy Portfolio Model with Different Investor Risk Attitudes. Eur. J. Oper. Res. 2013, 227, 385–390. [Google Scholar] [CrossRef]
- Tanaka, H.; Guo, P.; Turksen, B. Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions. Fuzzy Sets Syst. 2000, 111, 387–397. [Google Scholar] [CrossRef]
- Duan, L.; Stahlecker, P. A Portfolio Selection Model Using Fuzzy Returns. Fuzzy Optim. Decis. Mak. 2011, 10, 167–191. [Google Scholar] [CrossRef]
- Guo, H.; Sun, B.; Karimi, H.R.; Ge, Y.; Jin, W. Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach. Math. Probl. Eng. 2012. [Google Scholar] [CrossRef]
- Gupta, P.; Mittal, G.; Mehlawat, M.K. Multiobjective Expected Value Model for Portfolio Selection in Fuzzy Environment. Optim. Lett. 2013, 7, 1765–1791. [Google Scholar] [CrossRef]
- Gupta, P.; Mittal, G.; Saxena, A. Asset Portfolio Optimization Using Fuzzy Mathematical Programming. Inf. Sci. 2008, 178, 1734–1755. [Google Scholar] [CrossRef]
- Huang, X.; Shen, W. Multi-period Mean-variance Model with Transaction Cost for Fuzzy Portfolio Selection. In Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, China, 10–12 August 2010. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L. Comparative Research of Portfolio Model Using Fuzzy Theory. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 24–27 August 2007. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, W.G. Fuzzy Portfolio Optimization Model Under Real Constraints. Insur. Math. Econ. 2013, 53, 704–711. [Google Scholar] [CrossRef]
- Wu, X.L.; Liu, Y.K. Optimizing Fuzzy Portfolio Selection Problems by Parametric Quadratic Programming. Fuzzy Optim. Decis. Mak. 2012, 11, 411–449. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, S. On Fuzzy Portfolio Selection Problems. Fuzzy Optim. Decis. Mak. 2002, 1, 361–377. [Google Scholar] [CrossRef]
- Mehlawat, M.K. Credibilistic Mean-entropy Models for Multi-period Portfolio Selection with Multi-choice Aspiration Levels. Inf. Sci. 2016, 345, 9–26. [Google Scholar] [CrossRef]
- Kahraman, C.; Ruan, D.; Tolga, E. Capital Budgeting Techniques Using Discounted Fuzzy Versus Probabilistic Cash Flows. Inf. Sci. 2002, 142, 57–76. [Google Scholar] [CrossRef]
- Fang, Y.; Lai, K.K.; Wang, S. Fuzzy Portfolio Optimization. Theory and Methods. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany, 2008; Volume 609. [Google Scholar]
- Gupta, P.; Mehlawat, M.K.; Inuiguchi, M.; Chandra, S. Fuzzy Portfolio Optimization. Advances in Hybrid Multi-criteria Methodologies. In Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2014; Volume 316. [Google Scholar] [CrossRef]
- Kosiński, W.; Prokopowicz, P.; Ślęzak, D. Fuzzy Numbers with Algebraic Operations: Algorithmic Approach. In Proceedings of the Eight International Conference on Information, Logistics & Supply Chain–ILS 2020, Austin, TX, USA, 22–24 April 2020; Klopotek, M., Wierzchoń, S.T., Michalewicz, M., Eds.; Physica Verlag: Sopot, Poland; Springer: Berlin/Heidelberg, Germany, 2002; pp. 311–320. [Google Scholar]
- Kosiński, W. On Fuzzy Number Calculus. Int. J. Appl. Math. Comput. Sci. 2006, 16, 51–57. [Google Scholar]
- Piasecki, K. Revision of the Kosiński’s Theory of Ordered Fuzzy Numbers. Axioms 2018, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Prokopowicz, P. The Directed Inference for the Kosinski’s Fuzzy Number Model. In Proceedings of the Second International Afro-European Conference for Industrial Advancement, Villejuif, France, 9–11 September 2015. [Google Scholar]
- Prokopowicz, P.; Pedrycz, W. The Directed Compatibility Between Ordered Fuzzy Numbers—A Base Tool for a Direction Sensitive Fuzzy Information Processing. In Advances in Inteligent Systems and Computing; Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E., Snasel, V., Alimi, A.M., Eds.; Springer: Cham, Switzerland, 2015; Volume 127, pp. 493–505. [Google Scholar] [CrossRef]
- Prokopowicz, P.; Pedrycz, W. The Directed Compatibility between Ordered Fuzzy Numbers–A Base Tool for a Direction Sensitive Fuzzy Information Processing. In Proceedings of the Artificial Intelligence and Soft Computing ICAISC 2015, Lecture Notes in Computer Science. Zakopane, Poland, 14–18 June 2015; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J., Eds.; Springer: Cham, Switzeland, 2015; Volume 9119. [Google Scholar] [CrossRef]
- Piasecki, K. Relation “Greater Than or Equal to” Between Ordered Fuzzy Numbers. Appl. Syst. Innov. 2019, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, K.; Łyczkowska-Hanćkowiak, A. Representation of Japanese Candlesticks by Oriented Fuzzy Numbers. Economics 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Prokopowicz, P.; Czerniak, J.; Mikołajewski, D.; Apiecionek, Ł.; Ślȩzak, D. Analysis of Temporospatial Gait Parameters. In Theory and Applications of Ordered Fuzzy Number; Springer: Berlin, Germany, 2017; Volume 356, pp. 289–302. [Google Scholar]
- Kacprzak, D.; Kosiński, W.; Kosiński, W.K. Financial Stock Data and Ordered Fuzzy Numbers. In Proceedings of the Artificial Intelligence and Soft Computing. ICAISC 2013, Zakopane, Poland, 9–13 June 2013; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; Volume 7894, pp. 259–270. [Google Scholar]
- Kacprzak, D.; Kosiński, W. Optimizing Firm Inventory Costs as a Fuzzy Problem. Stud. Log. Gramm. Rhetor. 2014, 37, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Chwastyk, A.; Pisz, I. OFN Capital Budgeting Under Uncertainty and Risk. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 157–170. [Google Scholar]
- Czerniak, J.M. OFN Ant Method Based on TSP Ant Colony Optimization. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 207–222. [Google Scholar]
- Ewald, D.; Czerniak, J.M.; Paprzycki, M. A New OFN Bee Method as an Example of Fuzzy Observance Applied for ABC Optimization. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 223–238. [Google Scholar]
- Kacprzak, D. Input-Output Model Based on Ordered Fuzzy Numbers. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 171–182. [Google Scholar]
- Kacprzak, D. Objective Weights Based on Ordered Fuzzy Numbers for Fuzzy Multiple Criteria Decision-making Methods. Entropy 2017, 19, 373. [Google Scholar] [CrossRef] [Green Version]
- Marszałek, A.; Burczyński, T. Ordered fuzzy candlesticks. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 183–194. [Google Scholar] [CrossRef]
- Piasecki, K. Expected Return Rate Determined as Oriented Fuzzy Number. In Proceedings of the 35th International Conference Mathematical Methods in Economics Conference, Hradec Králové, Czech Republic, 13–15 September 2017; pp. 561–565. [Google Scholar]
- Roszkowska, E.; Kacprzak, D. The Fuzzy SAW and Fuzzy TOPSIS Procedures Based on Ordered Fuzzy Numbers. Inf. Sci. 2016, 369, 564–584. [Google Scholar] [CrossRef]
- Rudnik, K.; Kacprzak, D. Fuzzy TOPSIS Method with Ordered Fuzzy Numbers for Flow Control in a Manufacturing System. Appl. Soft Comput. 2017, 52, 1020–1041. [Google Scholar] [CrossRef]
- Zarzycki, H.; Czerniak, J.M.; Dobrosielski, W.T. Detecting Nasdaq Composite Index Trends with OFNs. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 195–206. [Google Scholar]
- Łyczkowska-Hanćkowiak, A.; Piasecki, K. Two-assets Portfolio with Trapezoidal Oriented Fuzzy Present values. In Proceedings of the 36th International Conference Mathematical Methods in Economics Conference, Jindřichův Hradec, Czech Republic, 12–14 September 2018; pp. 306–311. [Google Scholar]
- Łyczkowska-Hanćkowiak, A.; Piasecki, K. Present Value of Portfolio of Assets with Present Values Determined by Trapezoidal Ordered Fuzzy Numbers. Oper. Res. Decis. 2018, 28, 41–56. [Google Scholar]
- Piasecki, K.; Roszkowska, E. On Application of Ordered Fuzzy Numbers in Ranking Linguistically Evaluated Negotiation Offers. Adv. Fuzzy Syst. 2018. [Google Scholar] [CrossRef]
- Piasecki, K.; Roszkowska, E.; Łyczkowska-Hanćkowiak, A. Simple Additive Weighting Method Equipped with Fuzzy Ranking of Evaluated Alternatives. Symmetry 2019, 11, 482. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, K.; Roszkowska, E.; Łyczkowska-Hanćkowiak, A. Impact of the Orientation of the Ordered Fuzzy Assessment on the Simple Additive Weighted Method. Symmetry 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Łyczkowska-Hanćkowiak, A. Sharpe’s Ratio for Oriented Fuzzy Discount Factor. Mathematics 2019, 7, 272. [Google Scholar] [CrossRef] [Green Version]
- Łyczkowska-Hanćkowiak, A. On Application Oriented Fuzzy Numbers for Imprecise Investment Recommendations. Symmetry 2020, 12, 1672. [Google Scholar] [CrossRef]
- Piasecki, K.; Siwek, J. Behavioural Present Value Defined as Fuzzy Number a New Approach. Folia Oeconomica Stetin. 2015, 15, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Łyczkowska-Hanćkowiak, A. Behavioural Present Value Determined by Ordered Fuzzy Number. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Peccati, L. Su di Una Caratterizzazione del Principio del Criterio Dell’attualizzazione. In Studium Parmense; Università di Parma: Parma, Italy, 1972. [Google Scholar]
- Janssen, J.; Manca, R.; Volpe di Prignano, E. Mathematical Finance. Deterministic and Stochastic Models; John Wiley & Sons: London, UK, 2009. [Google Scholar]
- Ramsey, F.P.A. Mathematical Theory of Saving. Econ. J. 1928, 38, 543–559. [Google Scholar] [CrossRef]
- Samuelson, P.A. A Note on Measurement of Utility. Rev. Econ. Stud. 1937, 4, 155–161. [Google Scholar] [CrossRef]
- Koopmans, T.C.; Diamond, P.A.; Williamson, R.E. Stationary Utility and Time Perspective. Econom. J. Econom. Soc. 1964, 32, 82–100. [Google Scholar] [CrossRef]
- Strotz, R.H. Myopia and Inconsistency in Dynamic Utility Maximization. Rev. Econ. Stud. 1955, 23. [Google Scholar] [CrossRef]
- Loewenstein, G.; Prelec, D. Anomalies in Intertemporal Choice: Evidence and Interpretation. Q. J. Econ. 1992, 107, 573–597. [Google Scholar] [CrossRef]
- Frederick, S.; Loewenstein, G.; O’Donoghue, T. Time Discounting and Time Preference: A Critical Review. J. Econ. Lit. 2002, 40, 351–401. [Google Scholar] [CrossRef]
- Streich, P.; Levy, J.S. Time Horizons, Discounting, and Intertemporal Choice. J. Confl. Resolut. 2007, 51, 199–226. [Google Scholar] [CrossRef] [Green Version]
- Thaler, R.H. Some Empirical Evidence on Dynamic Inconsistency. Econ. Lett. 1981, 8. [Google Scholar] [CrossRef]
- Herrnstein, R.J. Rational Choice Theory: Necessary but not Sufficient. Am. Psychol. 1990, 45. [Google Scholar] [CrossRef]
- Mazur, J.E. An Adjusting Procedure for Studying Delayed Reinforcement. In The Effect of Delay and of Intervening Events on Reinforcement Value. Quantitative Analysis of Behavior; Commons, M.L., Mazur, J.E., Nevin, J.A., Rachlin, H., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1987; pp. 55–73. [Google Scholar]
- Ainslie, G. Specious Reward: A Behavioral Theory of Impulsiveness and Impulse Control. Psychol. Bull. 1975, 82. [Google Scholar] [CrossRef] [Green Version]
- Herrnstein, R.J. Self-control as Response Strength. In Quantification of Steady-state Operant Behavior; Elsevier/North Holland Biomedical Press: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Doyle, J.R. Survey of Time Preference, Delay Discounting Model. Judgm. Decis. Mak. 2013, 8, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Killeen, P.R. An Additive-utility Model of Delay Discounting. Psychol. Rev. 2009, 116, 602–619. [Google Scholar] [CrossRef] [PubMed]
- Rachlin, H. Notes on Discounting. J. Exp. Anal. Behav. 2006, 85, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Laibson, D. Golden Eggs and Hyperbolic Discounting. Q. J. Econ. 1997, 112, 443–477. [Google Scholar] [CrossRef] [Green Version]
- Benhabib, J.; Bisin, A.; Schotter, A. Present Bias, Quasi-hyperbolic Discounting, and Fixed Costs. Games Econ. Behav. 2010, 69, 205–223. [Google Scholar] [CrossRef]
- Commons, M.L. How Reinforcement Density is Discriminated and Scaled. In Quantitative Analyses of Behavior. Discriminative Properties of Reinforcement Schedules; Commons, M.L., Nevin, J.A., Eds.; Ballinger: Cambridge, MA, USA, 1981; Volume 1. [Google Scholar]
- Commons, M.L.; Woodford, M.; Ducheny, J.R. The Relationship Between Perceived Density of Reinforcement in a Schedule Sample Audits Reinforcing Value. In Quantitative Analysis of Behavior. Matching and Maximizing Accounts; Commons, M.L., Nevin, J.A., Eds.; Ballinger: Cambridge, MA, USA, 1982; Volume 2. [Google Scholar]
- Davison, M.C. Preference for Mixed-interval Versus Fixed-interval Schedules. J. Exp. Anal. Behav. 1969, 12, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Green, L.; Myerson, J. Cross-cultural Comparisons of Discounting Delayed and Probabilistic Rewards. Psychol. Rec. 2002, 52, 479–492. [Google Scholar] [CrossRef]
- Roelofsma, P.H.M.P. Modeling Intertemporal Choices: An Anomaly Approach. Acta Psychol. 1996, 93, 5–22. [Google Scholar] [CrossRef]
- Ebert, J.E.; Prelec, D. The Fragility of Time: Time-insensitivity and Valuation of the Near and Future. Manag. Sci. 2007, 53, 1423–1438. [Google Scholar] [CrossRef] [Green Version]
- Myerson, J.; Green, L. Discounting of Delayed Rewards: Models of Individual Choice. J. Exp. Anal. Behav. 1995, 64, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, D. Is time Discounting Hyperbolic or Subadditive? J. Risk Uncertain. 2001, 23, 5–32. [Google Scholar] [CrossRef]
- Masin, S.C.; Zudini, V.; Antonelli, M. Early Alternative Derivations of Fechner’s Law. J. Hist. Behav. Sci. 2009, 45, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Bleichrodt, H.; Rohde, K.I.M.; Wakker, P.P. Non-hyperbolic Time Inconsistency. Games Econ. Behav. 2009, 66, 27–38. [Google Scholar] [CrossRef]
- Stevens, S.S. On the Psychophysical Law. Psychol. Rev. 1957, 64, 153–181. [Google Scholar] [CrossRef]
- Stevens, S.S. To Honor Fechner and Repeal His Law. Science 1961, 133, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Piasecki, K. Discounting Under Impact of Temporal Risk Aversion—A Case of Discrete Time. Res. Pap. Wrocław Univ. Econ. 2015, 381, 289–298. [Google Scholar] [CrossRef]
- Piasecki, K. Discounting Under Impact of Temporal Risk Aversion—A Case of Continuous Time. In Economic Development and Management of Regions; Jedlička, P., Ed.; Gaudeamus, University of Hradec Kralove: Hradec Králové, Chezh Republic, 2015; Volume 5. [Google Scholar]
- Piasecki, K. Discounting Under Impact of Risk Aversion. SSRN Electron. J. 2015. [Google Scholar] [CrossRef]
- Ok, E.A.; Masatlioglu, Y. A Theory of (Relative) Discounting. J. Econ. Theory 2007, 137, 214–245. [Google Scholar] [CrossRef]
- Dubra, J. A Theory of Time Preferences Over Risky Outcomes. J. Math. Econ. 2009, 45, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Rotschedl, J.; Kaderabkova, B.; Čermáková, K. Parametric Discounting Model of Utility. Procedia Econ. Financ. 2015, 30, 730–741. [Google Scholar] [CrossRef] [Green Version]
- Von Mises, L. The Ultimate Foundation of Economic Science. An Essay on Method; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1962. [Google Scholar]
- Tversky, A.; Kahneman, D. Availability: A Heuristic for Judging Frequency and Probability. Cogn. Psychol. 1973, 5, 207–232. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment Under Uncertainty: Heuristic and Biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Barberis, N.; Shleifer, A.; Vishny, R. A Model of Investor Sentiment. J. Financ. Econ. 1998, 49, 307–343. [Google Scholar] [CrossRef]
- Daniel, K.; Hirshleifer, D.; Subrahmanyam, A. Overconfidence, Arbitrage and Equilibrium Asset Pricing. J. Financ. 2001, 56, 921–965. [Google Scholar] [CrossRef]
- Hong, H.; Stein, J. A Unified Theory of Under Reaction, Momentum Trading and Over Reaction in Asset Market. J. Financ. 1999, 54, 2143–2184. [Google Scholar] [CrossRef] [Green Version]
- Ainslie, G.; Haendel, V. The Motives of the Will. In Etiologic Aspects of Alcohol and Drug Abuse, Springfield; Gottheil, E., Druley, K.A., Skoloda, T.E., Waxman, H., Eds.; Charles, C. Thomas: Springfield, IL, USA, 1983; pp. 119–140. [Google Scholar]
- Kirby, K.N. Bidding on the Future: Evidence Against Normative Discounting of Delayed Rewards. J. Exp. Psychol. Gen. 1997, 126, 54–70. [Google Scholar] [CrossRef]
- Kirby, K.N.; Marakovič, N.N. Modeling Myopic Decision: Evidence for Hyperbolic Delay-Discounting with Subjects and Amounts. Organ. Behav. Hum. Decis. Process. 1995, 64, 22–30. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometica 1979, 47, 263–292. [Google Scholar] [CrossRef] [Green Version]
- Loewenstein, G. Frames of Mind in Intertemporal Choice. Manag. Sci. 1988, 34, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Shelley, M.K. Outcome Signs, Question Frames and Discount Rates. Manag. Sci. 1993, 39, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Kirby, K.N.; Santiesteban, M. Concave Utility, Transaction Costs and Risk in Measuring Discounting of Delayed Rewards. J. Exp. Psychol. Learn. Mem. Cogn. 2003, 29, 66–79. [Google Scholar] [CrossRef]
- Fishburn, P.; Edwards, W. Discount Neutral Utility Models for Denumerable Time Streams. Theory Decis. 1997, 43, 139–166. [Google Scholar] [CrossRef]
- Dacey, R.; Zielonka, P. A Detailed Prospect Theory Explanation of the Disposition Effect. J. Behav. Financ. 2008, 9, 43–50. [Google Scholar] [CrossRef]
- Zauberman, G.; Kyu Kim, B.; Malkoc, S.; Bettman, J.R. Discounting Time and Time Discounting: Subjective Time Perception and Intertemporal Preferences. J. Mark. Res. 2009, 46, 543–556. [Google Scholar] [CrossRef]
- Kim, B.K.; Zauberman, G. Perception of Anticipatory Time in Temporal Discounting. J. Neurosci. Psychol. Econ. 2009, 2, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Epper, T.; Fehr-Duda, H.; Bruhin, A. Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting. SSRN Electron. J. 2009, 412. [Google Scholar] [CrossRef] [Green Version]
- Kontek, K. Decision Utility Theory: Back to von Neumann, Morgenstern, and Markowitz. SSRN Electron. J. 2009. [Google Scholar] [CrossRef] [Green Version]
- Rabin, M. Incorporating Fairness into Game Theory and Economics. Am. Econ. Rev. 1993, 83, 1281–1302. [Google Scholar]
- Delgado, M.; Vila, M.A.; Voxman, W. On a Canonical Representation of Fuzzy Numbers. Fuzzy Sets Syst. 1998, 93, 125–135. [Google Scholar] [CrossRef]
- Goetschel, R.; Voxman, W. Elementary Fuzzy Calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Piasecki, K.; Stasiak, M.D. The Forex Trading System for Speculation with Constant Magnitude of Unit Return. Mathematics 2019, 7, 623. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, K.; Łyczkowska-Hanćkowiak, A. Oriented Fuzzy Numbers vs. Fuzzy Numbers. Mathematics 2021, 9, 523. [Google Scholar] [CrossRef]
- Klir, G.J. Developments in Uncertainty-based Information. Adv. Comput. 1993, 36, 255–332. [Google Scholar] [CrossRef]
- Ross, S.A. The Arbitrage Theory of Capital Asset Pricing. J. Econ. Theory 1976, 13, 341–360. [Google Scholar] [CrossRef]
- Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Grossman, S.J.; Stiglitz, J.E. On the Impossibility of Informationally Efficient Markets. Am. Econ. Rev. 1980, 70, 393–408. [Google Scholar]
- Edwards, W. Conservatism in Human Information Processing. In Formal Representation of Human Judgment; Klienmutz, B., Ed.; Wiley: New York, NY, USA, 1968; pp. 17–52. [Google Scholar]
- Tversky, A. Features of Similarity. Psychol. Rev. 1977, 84, 327–352. [Google Scholar] [CrossRef]
- Akerlof, G.A.; Shiller, R.I. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Piasecki, K. On Return Rate Estimated by Intuitionistic Fuzzy Probabilistic Set. In Mathematical Methods in Economics MME 2015; Martincik, D., Ircingova, J., Janecek, P., Eds.; Faculty of Economics, University of West Bohemian: Plzen, Poland, 2015; pp. 641–646. [Google Scholar]
- Piasecki, K. The Intuitionistic Fuzzy Investment Recommendations. In Proceedings of the Mathematical Methods in Economics MME 2016 Conference Proceedings, Liberec, Czech Republic, 6–9 September 2016; Kocourek, A., Vavroušek, M., Eds.; Technical University of Liberec: Liberec, Czech Republic, 2016; pp. 681–686. [Google Scholar]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J.; Xu, Z.; Bedregal, B.; Montero, J.; Hagras, H.; Herrera, F.; De Baets, B. A Historical Account of Types of Fuzzy Sets and Their Relationships. IEEE Trans. Fuzzy Syst. 2016, 24, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Versaci, M.; Calcagno, S.; Cacciola, M.; Morabito, F.; Palamara, I.; Pellicanò, D. Standard Soft Computing Techniques for Characterization of Defects in Nondestructive Evaluation. In Ultrasonic Nondestructive Evaluation Systems; Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M., Eds.; Springer: Cham, Switzeland, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, K.; Łyczkowska-Hanćkowiak, A. On Present Value Evaluation under the Impact of Behavioural Factors Using Oriented Fuzzy Numbers. Symmetry 2021, 13, 468. https://doi.org/10.3390/sym13030468
Piasecki K, Łyczkowska-Hanćkowiak A. On Present Value Evaluation under the Impact of Behavioural Factors Using Oriented Fuzzy Numbers. Symmetry. 2021; 13(3):468. https://doi.org/10.3390/sym13030468
Chicago/Turabian StylePiasecki, Krzysztof, and Anna Łyczkowska-Hanćkowiak. 2021. "On Present Value Evaluation under the Impact of Behavioural Factors Using Oriented Fuzzy Numbers" Symmetry 13, no. 3: 468. https://doi.org/10.3390/sym13030468
APA StylePiasecki, K., & Łyczkowska-Hanćkowiak, A. (2021). On Present Value Evaluation under the Impact of Behavioural Factors Using Oriented Fuzzy Numbers. Symmetry, 13(3), 468. https://doi.org/10.3390/sym13030468