Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product
Abstract
:1. Introduction
Preliminaries
2. Hadamard Product of k-Gauss Hypergeometric Functions
2.1. Convergence Property
- Converges absolutely for
- Converges absolutely for under condition (9); and
- Diverges for
2.2. Derivative Formulae
3. Some Integral Representations and Integral Transforms
3.1. Integral Representations
3.2. Integral Transforms
4. Contiguous Function Relations and Differential Equations
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, P.; Agarwal, R.; Ruzhansky, M. Special Functions and Analysis of Differential Equations, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Akhmedova, V.; Akhmedov, E. Selected Special Functions for Fundamental Physics; SpringerBriefs in Physics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Seaborn, J. Hypergeometric Functions and Their Applications. Springer: New York, NY, USA, 1991. [Google Scholar]
- Sneddon, I. Special Functions of Mathematical Physics and Chemistry; Oliver and Boyd: Edinburgh, UK, 1956. [Google Scholar]
- Srivastava, H.; Rahman, G.; Nisar, K. Some extensions of the Pochhammer Symbol and the associated hypergeometric functions. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 2601–2606. [Google Scholar] [CrossRef]
- Srivastava, H.; Tassaddiq, A.; Rahman, G.; Nisar, K.; Khan, I. A new extension of the t-Gauss hypergeometric function and its associated properties. Mathematics 2019, 7, 996. [Google Scholar] [CrossRef] [Green Version]
- Jana, R.; Maheshwari, B.; Shukla, A.K. Note on extended hypergeometric function. Proyecciones (Antofagasta) 2019, 38, 585–595. [Google Scholar] [CrossRef]
- Jana, R.; Maheshwari, B.; Shukla, A. Some results on the extended hypergeometric function. J. Indian Math. Soc. 2020, 87, 70. [Google Scholar] [CrossRef]
- Goswami, A.; Jain, S.; Agarwal, P.; Araci, S. A note on the new extended beta and Gauss hypergeometric functions. Appl. Math. Inf. Sci. 2018, 12, 139–144. [Google Scholar] [CrossRef]
- Agarwal, P.; Choi, J.; Jain, S. Extended hypergeometric functions of two and three variables. Commun. Korean Math. Soc. 2015, 30, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Fuli, H.; Bakhet, A.; Hidan, M.; Abdalla, M. On the extended hypergeometric matrix functions and their applications for the derivatives of the extended Jacobi matrix polynomial. Math. Eng. 2020, 2020, 4268361. [Google Scholar]
- Hidan, M.; Boulaaras, S.; Cherif, B.; Abdalla, M. Further results on the (p; k) analogue of hypergeometric functions associated with fractional calculus operators. Math. Probl. Eng. 2021, 2021, 5535962. [Google Scholar] [CrossRef]
- Hidan, M.; Abdalla, M. A note on the Appell hypergeometric matrix function F2. Math. Probl. Eng. 2020, 2020, 6058987. [Google Scholar] [CrossRef]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2020, 68, 1–28. [Google Scholar] [CrossRef]
- Abdalla, M. Fractional operators for the Wright hypergeometric matrix functions. Adv. Differ. Equ. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Abdalla, M. Further results on the generalized hypergeometric matrix functions. Int. J. Comput. Sci. Math. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Abdalla, M.; Bakhet, A. Extended Gauss hypergeometric matrix functions. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 1465–1470. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and k- Pochhammer symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Mubeen, S.; Naz, M.; Rehman, A.; Rahman, G. Solutions of k-hypergeometric differential equations. J. Appl. Math. 2014, 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, S.; Rahman, G.; Rehman, A.; Naz, M. Contiguous function relations for k-hypergeometric Functions. ISRN Math. Anal. 2014, 2014, 410801. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, S.; Habibullah, G. An integral representation of some k-hypergeometric functions. Int. Math. Forum. 2012, 7, 203–207. [Google Scholar]
- Mubeen, S. k-Analogue of Kummers first formula. J. Inequal. Spec. Funct. 2012, 3, 41–44. [Google Scholar]
- Rahman, G.; Mubeen, S.; Nisar, K. On generalized k- fractional derivative operator. AIMS Math. 2020, 5, 1936–1945. [Google Scholar] [CrossRef]
- Chinra, S.; Kamalappan, V.; Rakha, M.; Rathie, A. On several new contiguous function relations for k-hypergeometric function with two parameters. Commun. Korean Math. Soc. 2017, 32, 637–651. [Google Scholar]
- Korkmaz-Duzgun, D.; Erkus-Duman, E. Generating functions for k-hypergeometric functions. Int. J. Appl. Phys. Math. 2019, 9, 119–126. [Google Scholar]
- Nisar, K.; Qi, F.; Rahman, G.; Mubeen, S.; Arshad, M. Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 2018, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Dong, Y. k-hypergeometric series solutions to one type of non-homogeneous k-hypergeometric equations. Symmetry 2019, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. Unified approach to fractional calculus images of special functions—A survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Yilmazer, R.; Ali, K. Discrete fractional solutions to the k-hypergeometric differential equation. Math. Meth. Appl. Sci. 2020, 18. [Google Scholar] [CrossRef]
- Sadykov, T. The Hadamard product of hypergeometric series. Bull. Sci. Math. 2002, 126, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Nieto, J.; Singh, G.; Choi, J. Certain generating relations involving the generalized multi-index Bessel—Maitland and function. Math. Probl. Eng. 2020, 2020, 8596736. [Google Scholar] [CrossRef]
- Rainville, E. Special Functions; The Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Milovanovi, G.; Parmar, R.; Rathie, A. A Study Of generalized summation theorems for the series 2F1 with an applications to laplace transforms of convolution type integrals involving Kummer’s functions 1F1. Appl. Anal. Discret. Math. 2018, 12, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Koepf, W.; Kim, I.; Rathie, A. On a new class of Laplace-type integrals involving generalized hypergeometric functions. Axioms 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Byteva, V.; Kalmykovb, M.; OlafMoch, S. Hypergeometric functions differential reduction (hyperdire): Mathematic Abased packages for differential reduction of generalized hypergeometric functions: FD and FS Horn-type hypergeometric functions of three variables. Comput. Phys. Commun. 2014, 185, 3041–3058. [Google Scholar] [CrossRef] [Green Version]
- Guefaifia, R.; Boulaaras, S.M.; El-Sayed, A.A.; Abdalla, M.; Cherif, B. On existence of sequences of weak solutions of fractional systems with Lipschitz nonlinearity. J. Funct. Spaces 2021, 2021, 5510387. [Google Scholar]
- KamKamache, F.; Boulaaras, S.M.; Guefaifia, R.; Chung, N.T.; Cherif, B.B.; Abdalla, M. On existence of multiplicity of weak solutions for a new class of nonlinear fractional boundary value systems via variational approach. J. Funct. Spaces 2021, 2021, 5544740. [Google Scholar]
- Kaiblinger, N. Product of two hypergeometric functions with power arguments. J. Math. Anal. Appl. 2019, 479, 2236–2255. [Google Scholar] [CrossRef]
- Boulaaras, S.; Choucha, A.; Cherif, B.; Alharbi, A.; Abdalla, M. Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions. AIMS Math. 2021, 6, 4664–4676. [Google Scholar] [CrossRef]
- Ouchenane, D.; Choucha, A.; Boulaaras, M.A.S.; Cherif, B. On the Porous-Elastic System with Thermoelasticity of Type III and Distributed Delay: Well-Posedness and Stability. J. Funct. Spaces 2021, 2021, 9948143. [Google Scholar]
- Choucha, A.; Boulaaras, S.; Ouchenane, D.; Alkhalaf, S.; Mekawy, I.; Abdalla, M. On the system of coupled nonde generate Kirchhoff equations with distributed delay: Global existence and exponential decay. J. Funct. Spaces 2021, 2021, 5577277. [Google Scholar]
- Naz, S.; Naeem, M.N. On the generalization of k-fractional Hilfer-Katugampola derivative with Cauchy problem. Turk. J. Math. 2021, 45, 110–124. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, M.; Hidan, M. Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product. Symmetry 2021, 13, 714. https://doi.org/10.3390/sym13040714
Abdalla M, Hidan M. Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product. Symmetry. 2021; 13(4):714. https://doi.org/10.3390/sym13040714
Chicago/Turabian StyleAbdalla, Mohamed, and Muajebah Hidan. 2021. "Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product" Symmetry 13, no. 4: 714. https://doi.org/10.3390/sym13040714
APA StyleAbdalla, M., & Hidan, M. (2021). Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product. Symmetry, 13(4), 714. https://doi.org/10.3390/sym13040714