Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials
Abstract
:1. Introduction
2. Some Definitions and Notations
3. Main Results
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, P.; Baleanu, D.; Chen, Y.; Momani, S.; Machado, J. Fractional Calculus: ICFDA 2018. In Proceedings of the Mathematics Statistics 303 (Hardback), Amman, Jordan, 16–18 July 2020. [Google Scholar]
- Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized Liouville-Caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.S.; Mubeen, S.; Ahmad, M.M. A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind. J. Math. Comput. Sci. 2021, 22, 266–281. [Google Scholar] [CrossRef]
- Bansal, M.K.; Kumar, D.; Nisar, K.S.; Singh, J. Certain fractional calculus and integral transform results of incomplete ℵ-functions with applications. Math. Meth. Appl. Sci. 2020, 43. [Google Scholar] [CrossRef]
- Choi, J.; Agarwal, P. Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, 2014, 735946. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin, Genmany, 2010. [Google Scholar]
- Ghanbari, B.; Günerhan, H.; Srivastava, H.M. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model. Chaos Solitons Fractals 2020, 138, 109910. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Jain, S.; Bajaj, V.; Kumar, A. Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising. IEEE J. Biomed. Health Inform. 2018, 22, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Khalighi, M.; Eftekhari, L.; Hosseinpour, S.; Lahti, L. Three-species Lotka-Volterra model with respect to Caputo and Caputo-Fabrizio fractional operators. Symmetry 2021, 13, 368. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Rashid, S.; Hammouch, Z.; Jarad, F.; Chu, Y.-M. New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function. Fractals 2020, 28, 12. [Google Scholar] [CrossRef]
- Li, X.; Qaisar, S.; Nasir, J.; Butt, S.I.; Ahmad, F.; Bari, M.; Farooq, S.E. Some results on integral inequalities via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2019, 2019, 214. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. An Introduction to Fractional Calculus; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system. Math. Model. Eng. Prob. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Sene, N.; Srivastava, G. Generalized Mittag-Leffler input stability of the fractional differential equations. Symmetry 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Abdeljawad, T. Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 2020, 367. [Google Scholar] [CrossRef]
- Zayed, M.; Hidan, M.; Abdalla, M.; Abul-Ez, M. Fractional order of Legendre-type matrix polynomials. Adv. Differ. Equ. 2020, 2020, 506. [Google Scholar] [CrossRef]
- Zayed, M.; Abul-Ez, M.; Abdalla, M.; Saad, N. On the fractional order Rodrigues formula for the shifted Legendre-type matrix polynomials. Mathematics 2020, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cui, N.; Li, Y.; Duan, B.; Zhang, C. Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 27, 100945. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Chicago, IL, USA, 2006. [Google Scholar]
- Kumar, D.; Choi, J.; Srivastava, H.M. Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 2018, 23, 455–471. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 2011, 193, 133–160. [Google Scholar] [CrossRef] [Green Version]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls, Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- PNaik, A.; Zu, J.; Owolabi, K.M. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos Solitons Fractals 2020, 138, 109826. [Google Scholar] [CrossRef]
- Owolabi, K.M. High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology. Chaos Solitons Fractals 2020, 134, 109723. [Google Scholar] [CrossRef]
- Tadesse, H.; Suthar, D.L.; Gebru, Z. Certain integral transforms of the generalized k-Struve function. Acta Univ. Apulensis 2019, 59, 77–89. [Google Scholar] [CrossRef]
- Agarwal, P.; Chand, M.; Choi, J.; Singh, G. Certain fractional integrals and image formulas of generalized k-Bessel function. Commun. Korean Math. Soc. 2018, 33, 423–436. [Google Scholar]
- Choi, J.; Kachhia, K.B.; Prajapati, J.C.; Purohit, A.S.D. Some integral transforms involving extened generalized Gauss hypergeomtric functions. Commun. Korean Math. Soc. 2016, 31, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Usman, T.; Aman, M.; Al-Omari, S.K.; Araci, S. Computation of certain integral formulas involving generalized Wright function. Adv. Differ. Equ. 2020, 2020, 491. [Google Scholar] [CrossRef]
- Popolizio, M. Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. Mathematics 2018, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M. On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics 2021, 6, 6122–6139. [Google Scholar] [CrossRef]
- Abdalla, M. Special matrix functions: Characteristics, achievements and future directions. Linear Multilinear Algebra 2020, 68, 1–28. [Google Scholar] [CrossRef]
- Abdalla, M. Fractional operators for the Wright hypergeometric matrix functions. Adv. Differ. Equ. 2020, 2020, 246. [Google Scholar] [CrossRef]
- Bakhet, A.; He, F. On 2-variables Konhauser matrix polynomials and their fractional integrals. Mathematics 2020, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Bakhet, A.; Jiao, Y.; He, F. On the Wright hypergeometric matrix functions and their fractional calculus. Integral Transform. Spec. Funct. 2019, 30, 138–156. [Google Scholar] [CrossRef]
- Duan, J.; Chen, L. Solution of fractional differential equation systems and computation of matrix Mittag—Leffler functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb, H.; Kiliçman, A.; Agarwal, R.P. On integral transforms and matrix functions. Abstr. Appl. Anal. 2011, 2011, 207930. [Google Scholar] [CrossRef]
- He, F.; Bakhet, A.; Hidan, M.; Abdalla, M. Two variables Shivley’s matrix polynomials. Symmetry 2019, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Kargin, L.; Kurt, V. Chebyshev-type matrix polynomials and integral transforms. Hacet. J. Math. Stat. 2015, 44, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Khammash, G.S.; Agarwal, P.; Choi, J. Extended k-Gamma and k-Beta functions of matrix arguments. Mathematics 2020, 8, 1715. [Google Scholar] [CrossRef]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Am. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Altomare, M.; Costabile, F. A new determinant form of Bessel polynomials and applications. Math. Comput. Simul. 2017, 141, 16–23. [Google Scholar] [CrossRef]
- Abdalla, M.; Abul-Ez, M.; Morais, J. On the construction of generalized monogenic Bessel polynomials. Math. Meth. Appl. Sci. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Tcheutia, D.D. Nonnegative linearization coefficients of the generalized Bessel polynomials. Ramanujan J. 2019, 48, 217–231. [Google Scholar] [CrossRef]
- Abdalla, M.; Hidan, M. Fractional orders of the generalized Bessel matrix polynomials. Eur. J. Pure Appl. Math. 2017, 10, 995–1004. [Google Scholar]
- Abdalla, M. Operational formula for the generalized Bessel matrix polynomials. J. Modern. Meth. Numer. Math. 2017, 8, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Shehata, A. Certain generating matrix relations of generalized Bessel matrix polynomials from the view point of Lie algebra method. Bull. Iran. Math. Soc. 2018, 44, 1025–1043. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J. Linear Operators Part I; Interscience: New York, NY, USA, 1963. [Google Scholar]
- Brualdi, R.; Cvetkvić, D. A Combinatorial Approach to Matrix Theory and Its Applications; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Gohberg, I.; Lancaster, P.; Rodman, L. Matrix Polynomials; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Higham, N.J. Functions of Matrices Theory and Computation; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Jódar, L.; Cortés, J.C. Some properties of Gamma and Beta matrix functions. Appl. Math. Lett. 1998, 11, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Jódar, L.; Cortés, J.C. On the hypergeometric matrix function. J. Comp. Appl. Math. 1998, 99, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Jódar, L.; Company, R.; Ponosoda, E. Orthogonal matrix polytnomials and system of second order differential equations. Differ. Equ. Dyn. Syst. 1995, 3, 269–288. [Google Scholar]
- Jódar, L.; Sastre, J. The growth of Laguerre matrix polynomials on bounded intervals. Appl. Math. Lett. 2000, 13, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Hille, E. Lectures on Ordinary Differential Equations; Addison-Wesley: New York, NY, USA, 1969. [Google Scholar]
- Golub, G.; Loan, C.F.V. Matrix Computations; The Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Jódar, L.; Sastre, J. On Laguerre matrix polynomials. Utilitas Math. 1998, 53, 37–48. Available online: https://www.researchgate.net/publication/268636636 (accessed on 15 February 2021).
- Kishka, Z.M.; Shehata, A.; Abul-Dahab, M. The generalized Bessel matrix polynomials. J. Math. Comput. Sci. 2012, 2, 305–316. [Google Scholar]
- Casabán, M.C.; Company, R.; Egorova, V.N.; Jódar, L. Integral transform solution of random coupled parabolic partial differential models. Math. Meth. Appl. Sci. 2020, 48. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto ON, Canada; London, UK, 1954; Volume II, Available online: https://authors.library.caltech.edu/43489/7/Volume%202.pdf (accessed on 1 March 2021).
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA; Toronto ON, Canada; London, UK, 1954; Volume I, Available online: https://authors.library.caltech.edu/43489/1/Volume%201.pdf (accessed on 1 March 2021).
- Eslahchi, M.R.; Dehghan, M.; Ahmadi_Asl, S. The general Jacobi matrix method for solving some nonlinear ordinary differential equations. Appl. Math. Model. 2012, 36, 3387–3398. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, M.; Akel, M.; Choi, J. Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry 2021, 13, 622. https://doi.org/10.3390/sym13040622
Abdalla M, Akel M, Choi J. Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry. 2021; 13(4):622. https://doi.org/10.3390/sym13040622
Chicago/Turabian StyleAbdalla, Mohamed, Mohamed Akel, and Junesang Choi. 2021. "Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials" Symmetry 13, no. 4: 622. https://doi.org/10.3390/sym13040622
APA StyleAbdalla, M., Akel, M., & Choi, J. (2021). Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry, 13(4), 622. https://doi.org/10.3390/sym13040622