Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F)
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Interaction Energy
3.2. Geometries and QTAIM Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, J.S.; Paulsen, K.; Politzer, P. Molecular surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions. Proc. Indian Acad. Sci. (Chem. Sci.) 1994, 106, 267–275. [Google Scholar]
- Brinck, T.; Murray, J.S.; Politzer, P. Surface Electrostatic Potentials of Halogenated Methanes as Indicators of Directional Intermolecular Interactions. Int. J. Quant. Chem. 1992, 44, 57–64. [Google Scholar] [CrossRef]
- Murray, J.S.; Riley, K.E.; Politzer, P.; Clark, T. Directional Weak Intermolecular Interactions: σ-Hole Bonding. Aust. J. Chem. 2010, 63, 1598–1607. [Google Scholar] [CrossRef]
- Bankiewicz, B.; Palusiak, M. The shape of the halogen atom—anisotropy of electron distribution and its dependence on basis set and method used. Struct. Chem. 2013, 24, 1297–1306. [Google Scholar] [CrossRef] [Green Version]
- Legon, A.C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B···XY of the Hydrogen Bond B···HX. Angew. Chem. Int. Ed. 1999, 38, 2686–2714. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Halogen Bonding: An Interim Discussion. ChemPhysChem 2013, 14, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Neukirch, H.; Pilati, T.G.; Resnati, G. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Lane, P. σ-Hole Bonding and Hydrogen Bonding: Competitive Interactions. Int. J. Quantum Chem. 2007, 107, 3046–3052. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Halogen Versus Hydrogen. Science 2008, 321, 918–919. [Google Scholar] [CrossRef]
- Shields, Z.P.; Murray, J.S.; Politzer, P. Directional Tendencies of Halogen and Hydrogen Bonds. Int. J. Quantum Chem. 2010, 110, 2823–2832. [Google Scholar] [CrossRef]
- Wolters, L.P.; Bickelhaupt, F.M. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective. ChemistryOpen 2012, 1, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Blanco, F.; Solimannejad, M.; Elguero, J. Competition of Hydrogen Bonds and Halogen Bonds in Complexes of Hypohalous Acids with Nitrogenated Bases. J. Phys. Chem. A 2008, 112, 10856–10863. [Google Scholar] [CrossRef]
- Domagała, M.; Matczak, P.; Palusiak, M. Halogen bond, hydrogen bond and N···C interaction–On interrelation among these three noncovalent interactions. Comput. Theor. Chem. 2012, 998, 2633. [Google Scholar] [CrossRef]
- Voth, A.R.; Khuu, P.; Oishi, K.; Ho, P.S. Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat. Chem. 2009, 1, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Baldrighi, M.; Desper, J.; Metrangolo, P.; Resnati, G. Supramolecular Hierarchy among Halogen-Bond Donors. Chem. Eur. J. 2013, 19, 16240–16247. [Google Scholar] [CrossRef] [Green Version]
- Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, G.; et al. Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly and Performance of Light-Responsive Supramolecular Polymers. Adv. Funct. Mater. 2012, 22, 2572–2579. [Google Scholar] [CrossRef] [Green Version]
- Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen Bonding in Supramolecular Chemistry. Angew. Chem. Int. Ed. Engl. 2008, 47, 6114–6127. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Resnati, G.; Pilati, T.; Biella, S. Halogen Bonding in Crystal Engineering. Struct. Bond. 2008, 126, 105–136. [Google Scholar]
- Aakeröy, C.B.; Chopade, P.D.; Desper, J. Establishing a Hierarchy of Halogen Bonding by Engineering Crystals without Disorder. Cryst. Growth Des. 2013, 13, 4145–4150. [Google Scholar] [CrossRef]
- Voth, A.R.; Hays, F.A.; Ho, P.S. Directing macromolecular conformation through halogen bonds. Proc. Natl. Acad. Sci. USA 2007, 104, 6188–6193. [Google Scholar] [CrossRef] [Green Version]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P.S. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [Green Version]
- Valadares, N.F.; Salum, L.B.; Polikarpov, I.; Andricopulo, A.D.; Garratt, R.C. Role of Halogen Bonds in Thyroid Hormone Receptor Selectivity: Pharmacophore-Based 3D-QSSR Studies. J. Chem. Inf. Model. 2009, 49, 2606–2616. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, W.; Zhao, J.; Liang, D.; Yang, X.; Jin, S. A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition. J. Mol. Model. 2012, 18, 3867–3875. [Google Scholar] [CrossRef]
- Scholfield, M.R.; Zanden, C.M.; Carter, M.; Ho, P.S. Halogen bonding (X-bonding): A biological perspective. Protein Sci. 2013, 22, 139–152. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. Halogen Bonding—A Novel Interaction for Rational Drug Design? J. Med. Chem. 2009, 52, 2854–2862. [Google Scholar] [CrossRef]
- Sirimulla, S.; Bailey, J.B.; Vegesna, R.; Narayan, M. Halogen Interactions in Protein−Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design. J. Chem. Inf. Model. 2013, 53, 2781–2791. [Google Scholar] [CrossRef]
- Manna, D.; Roy, G.; Mugesh, G. Antithyroid Drugs and Their Analogues: Synthesis, Structure, and Mechanism of Action. Acc. Chem. Res. 2013, 46, 2706–2715. [Google Scholar] [CrossRef]
- Lankau, T.M.; Wu, Y.C.; Zou, J.W.; Yu, C.H. The Cooperativity between Hydrogen and Halogen Bonds. J. Theoret. Comput. Chem. 2008, 7, 13–35. [Google Scholar] [CrossRef]
- Li, Q.; Lin, Q.; Li, W.; Cheng, J.; Gong, B.; Sun, J. Cooperativity between the Halogen Bond and the Hydrogen Bond in H3N···XY···HF Complexes (X, Y = F, Cl, Br). ChemPhysChem 2008, 9, 2265–2269. [Google Scholar] [CrossRef] [PubMed]
- Awwadi, F.F.; Taher, D.; Haddad, S.F.; Turnbull, M.M. Competition between Hydrogen and Halogen Bonding Interactions: Theoretical and Crystallographic Studies. Cryst. Growth Des. 2014, 14, 1961–1971. [Google Scholar] [CrossRef]
- An, X.; Zhuo, H.; Wang, Y.; Li, Q. Competition between hydrogen bonds and halogen bonds in complexes of formamidine and hypohalous acids. J. Mol. Model 2013, 19, 4529–4535. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Fasulo, M.; Schultheiss, N.; Desper, J.; Moore, C. Structural Competition between Hydrogen Bonds and Halogen Bonds. J. Am. Chem. Soc. 2007, 129, 13772–13773. [Google Scholar] [CrossRef] [PubMed]
- Minguez Espallargas, G.F.; Zordan, F.; Arroyo Marin, L.; Adams, H.; Shankland, K.; van de Streek, J.; Brammer, L. Rational Modification of the Hierarchy of Intermolecular Interactions in Molecular Crystal Structures by Using Tunable Halogen Bonds. Chem. Eur. J. 2009, 15, 7554–7568. [Google Scholar] [CrossRef]
- Oh, S.Y.; Nickels, C.W.; Garcia, F.; Jones, W.; Friščić, T. Switching between halogen- and hydrogen-bonding in stoichiometric variations of a cocrystal of a phosphine oxide. CrystEngComm 2012, 14, 6110–6114. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Schultheiss, N.; Rajbanshi, A.; Desper, J.; Moore, C. Supramolecular Synthesis Based on a Combination of Hydrogen and Halogen Bonds. Cryst. Growth Des. 2009, 9, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Aakeröy, C.B.; Desper, J.; Helfrich, B.A.; Metrangolo, P.; Pilati, T.; Resnati, G.; Stevenazzi, A. Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chem. Commun. 2007, 4236–4238. [Google Scholar] [CrossRef]
- McDowell, S.A.C. Halogen and hydrogen bonding to the Br atom in complexes of FBr. J. Chem. Phys. 2010, 132, 044312. [Google Scholar] [CrossRef]
- Valkonen, A.; Chukhlieb, M.; Moilanen, J.; Tuononen, H.M.; Rissanen, K. Halogen and Hydrogen Bonded Complexes of 5‑Iodouracil. Cryst. Growth Des. 2013, 13, 4769–4775. [Google Scholar] [CrossRef] [Green Version]
- Estarellas, C.; Frontera, A.; Quinonero, D.; Alkorta, I.; Deya, P.M.; Elguero, J. Energetic vs Synergetic Stability: A Theoretical Study. J. Phys. Chem. A 2009, 113, 3266–3273. [Google Scholar] [CrossRef] [Green Version]
- Alkorta, I.; Blanco, F.; Deya, P.M.; Elguero, J.; Estarellas, C.; Frontera, A.; Quinonero, D. Cooperativity in multiple unusual weak bonds. Theor. Chem. Acc. 2010, 126, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Raatikainen, K.; Cametti, M.; Rissanen, K. The subtle balance of weak supramolecular interactions: The hierarchy of halogen and hydrogen bonds in haloanilinium and halopyridinium salts. Beilstein J. Org. Chem. 2010, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Wzgarda-Raj, K.; Rybarczyk-Pirek, A.J.; Wojtulewski, S.; Palusiak, M. C—Br···S halogen bonds in novel thiourea N-oxide cocrystals: Analysis of energetic and QTAIM parameters. Acta Cryst. 2020, C76, 170–176. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Rybarczyk-Pirek, A.J.; Wojtulewski, S.; Palusiak, M. N-Oxide–N-oxide interactions and Cl···Cl halogen bonds in pentachloropyridine N-oxide: The many-body approach to interactions in the crystal state. Acta Cryst. 2018, C74, 113–119. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation-Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.N.; Aquino, F.W.; Raeber, A.E.; Chen, X.; Wong, B.M. Halogen Bonding Interactions: Revised Benchmarks and a New Assessment of Exchange vs Dispersion. J. Chem. Theory Comput. 2018, 14, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Thanthiriwatte, K.S.; Hohenstein, E.G.; Burns, L.A.; Sherrill, C.D. Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. J. Chem. Theory Comput. 2011, 7, 88–96. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; von R. Schleyer, P.; Pople, J. AB INITIO Molecular Orbital Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986. [Google Scholar]
- Wiberg, K.B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 2004, 25, 1342–1346. [Google Scholar] [CrossRef]
- Young, D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-Word Problems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Domagała, M.; Lutyńska, A.; Palusiak, M. Extremely strong halogen bond. The case of a double-charge-assisted halogen bridge. J. Phys. Chem. A 2018, 122, 5484–5492. [Google Scholar] [CrossRef]
- Dominikowska, J.; Palusiak, M. Halogen-halogen interaction in view of many-body approach. Chem. Phys. Lett. 2013, 583, 8–13. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, NY, USA, 1990. [Google Scholar]
- Popelier, P.L.A. Atoms in Molecules: An Introduction; Pearson Education Limited, Prentice Hall: Harlow, UK, 2000. [Google Scholar]
- Keith, T.A. AIMAll (Version 17.01.25); TK Gristmill Software: Overland Park, KS, USA, 2017; Available online: Aim.tkgristmill.com (accessed on 1 April 2021).
- Palusiak, M. On the nature of halogen bond–The Kohn–Sham molecular orbital approach. J. Mol. Struct. Theochem. 2010, 945, 89–92. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Grabowski, S.J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.E. Popelier, Quantum molecular similarity. Part 2: The relation between properties in BCP space and bond length. Can. J. Chem. 1999, 77, 28–36. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of C–H–O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. A 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Lipkowski, P.; Grabowski, S.J.; Robinson, T.L.; Leszczyński, J. Properties of the C−H···H Dihydrogen Bond: An ab Initio and Topological Analysis. J. Phys. Chem. A 2004, 108, 10865–10872. [Google Scholar] [CrossRef]
R | Eint | Edef | Etot | R | Eint | Edef | Etot |
---|---|---|---|---|---|---|---|
R-PDA-ClCF3 complexes | R-Pyr-ClCF3 complexes | ||||||
NH2 | −2.974 | 0.203 | −2.771 | NH2 | −3.088 | 0.097 | −2.991 |
OH | −2.788 | 0.042 | −2.746 | OH | −2.813 | 0.074 | −2.739 |
H | −2.690 | 0.050 | −2.640 | H | −2.723 | 0.067 | −2.655 |
NO | −2.390 | 0.032 | −2.358 | NO | −2.234 | 0.039 | −2.195 |
NO2 | −2.334 | 0.021 | −2.313 | NO2 | −2.105 | 0.032 | −2.074 |
R-PDA-ClCH3 complexes | R-Pyr-ClCH3 complexes | ||||||
NH2 | −1.393 | 0.014 | −1.378 | NH2 | −0.237 | 0.008 | −0.229 |
OH | −1.540 | 0.019 | −1.521 | OH | −0.375 | 0.007 | −0.368 |
H | −1.545 | 0.019 | −1.526 | H | −0.372 | 0.007 | −0.365 |
NO | −1.896 | 0.022 | −1.874 | NO | −0.754 | 0.005 | −0.748 |
NO2 | −2.106 | 0.026 | −2.081 | NO2 | −0.866 | 0.005 | −0.860 |
R-PDA-BrCF3 complexes | R-Pyr-BrCF3 complexes | ||||||
NH2 | −5.057 | 0.338 | −4.719 | NH2 | −5.448 | 0.190 | −5.258 |
OH | −4.750 | 0.154 | −4.596 | OH | −4.961 | 0.146 | −4.815 |
H | −4.660 | 0.156 | −4.504 | H | −4.804 | 0.131 | −4.674 |
NO | −4.101 | 0.110 | −3.991 | NO | −3.973 | 0.080 | −3.894 |
NO2 | −3.948 | 0.091 | −3.856 | NO2 | −3.740 | 0.068 | −3.672 |
R-PDA-BrCH3 complexes | R-Pyr-BrCH3 complexes | ||||||
NH2 | −2.870 | 0.173 | −2.697 | NH2 | −1.627 | 0.024 | −1.603 |
OH | −2.930 | 0.022 | −2.908 | OH | −1.640 | 0.024 | −1.616 |
H | −2.905 | 0.020 | −2.885 | H | −1.607 | 0.026 | −1.581 |
NO | −3.103 | 0.014 | −3.089 | NO | −1.690 | 0.014 | −1.676 |
NO2 | −3.178 | 0.018 | −3.160 | NO2 | −1.714 | 0.016 | −1.697 |
Fragment I | Direction of Dipole Moment Vector | Fragment II | INTERACTION | Fragment I | Direction of Dipole Moment Vector | Fragment II | |||
---|---|---|---|---|---|---|---|---|---|
R-PDA-XCF3 complexes | R-Pyr-XCF3 complexes | ||||||||
H2N-PDA | ← | ← | Cl/Br-CF3 | Attraction | H2N-Pyr | ← | ← | Cl/Br-CF3 | |
HO-PDA | ← | ← | Cl/Br-CF3 | Attraction | HO-Pyr | ← | ← | Cl/Br-CF3 | |
H-PDA | ← | ← | Cl/Br-CF3 | Attraction | H-Pyr | ← | ← | Cl/Br-CF3 | |
ON-PDA | → | ← | Cl/Br-CF3 | Repulsion | ON-Pyr | → | ← | Cl/Br-CF3 | |
O2N-PDA | → | ← | Cl/Br-CF3 | Repulsion | O2N-Pyr | → | ← | Cl/Br-CF3 | |
R-PDA-XCH3 complexes | R-Pyr-XCH3 complexes | ||||||||
H2N-PDA | ← | → | Cl/Br-CH3 | Repulsion | H2N-Pyr | ← | → | Cl/Br-CH3 | |
HO-PDA | ← | → | Cl/Br-CH3 | Repulsion | HO-Pyr | ← | → | Cl/Br-CH3 | |
H-PDA | ← | → | Cl/Br-CH3 | Repulsion | H-Pyr | ← | → | Cl/Br-CH3 | |
ON-PDA | → | → | Cl/Br-CH3 | Attraction | ON-Pyr | → | → | Cl/Br-CH3 | |
O2N-PDA | → | → | Cl/Br-CH3 | Attraction | O2N-Pyr | → | → | Cl/Br-CH3 |
NH2 | OH | H | NO | NO2 | NH2 | OH | H | NO | NO2 | |
---|---|---|---|---|---|---|---|---|---|---|
R-PDA-ClCF3 complexes | R-Pyr-ClCF3 complexes | |||||||||
N···Cl | 3.009 | 3.028 | 3.057 | 3.078 | 3.073 | 2.951 | 2.974 | 2.985 | 3.029 | 3.043 |
H···Cl | 3.098 * | 3.083 * | 2.967 * | 2.971 * | 3.046 * | - | - | - | - | - |
H···Cl | 3.101 * | 3.086 * | 2.964 * | 2.987 * | 3.046 * | - | - | - | - | - |
R-PDA-ClCH3 complexes | R-Pyr-ClCH3 complexes | |||||||||
N···Cl | 3.219 | 3.214 | 3.218 | 3.22 | 3.211 | 3.445 * | 3.425 * | 3.402 * | 3.518 * | 3.461 * |
H···Cl | 3.176 * | 3.057 * | 3.065 * | 2.978 * | 3.066 * | 3.038 * | 3.031 * | 3.034 * | 2.962 * | 3.018 * |
H···Cl | 2.951 | 3.081 * | 3.065 * | 3.134 * | 3.066 * | - | - | - | - | - |
R-PDA-BrCF3 complexes | R-Pyr-BrCF3 complexes | |||||||||
N···Br | 2.958 | 2.979 | 2.989 | 3.026 | 3.03 | 2.881 | 2.905 | 2.915 | 2.962 | 2.974 |
H···Br | 2.931 | 2.94 | 2.936 | 2.949 | 2.992 | - | - | - | - | - |
H···Br | 2.929 | 2.932 | 2.937 | 2.969 | 2.99 | - | - | - | - | - |
R-PDA-BrCH3 complexes | R-Pyr-BrCH3 complexes | |||||||||
N···Br | 3.162 | 3.166 | 3.171 | 3.18 | 3.179 | 3.134 | 3.148 | 3.148 | 3.176 | 3.178 |
H···Br | 3.047 | 3.042 | 3.038 | 3.025 | 3.051 | - | - | - | - | - |
H···Br | 3.047 | 3.05 | 3.038 | 3.052 | 3.052 | - | - | - | - | - |
R | ∆ρN···X | |||||||
---|---|---|---|---|---|---|---|---|
ClCF3 | ClCH3 | BrCF3 | BrCH3 | |||||
NH2 | −0.0016 | (−12.5%) | 0.0037 | (+42.8%) | −0.0022 | (−13.2%) | −0.0002 | (−1.7%) |
OH | −0.0013 | (−10.9%) | 0.0036 | (+40.7%) | −0.0019 | (−11.8%) | 0.00004 | (+0.4%) |
H | −0.0013 | (−10.8%) | 0.0032 | (+37.4%) | −0.0019 | (−11.7%) | −0.0001 | (−0.7%) |
NO | −0.0006 | (−5.4%) | 0.0044 | (+50.9%) | −0.0013 | (−9.2%) | 0.0004 | (+3.9%) |
NO2 | −0.0004 | (−3.6%) | 0.0040 | (+45.5%) | −0.0012 | (−8.3%) | −0.0071 | (−64.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bankiewicz, B.; Palusiak, M. Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F). Symmetry 2021, 13, 766. https://doi.org/10.3390/sym13050766
Bankiewicz B, Palusiak M. Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F). Symmetry. 2021; 13(5):766. https://doi.org/10.3390/sym13050766
Chicago/Turabian StyleBankiewicz, Barbara, and Marcin Palusiak. 2021. "Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F)" Symmetry 13, no. 5: 766. https://doi.org/10.3390/sym13050766
APA StyleBankiewicz, B., & Palusiak, M. (2021). Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F). Symmetry, 13(5), 766. https://doi.org/10.3390/sym13050766