Modeling 3D–1D Junction via Very-Weak Formulation
Abstract
:1. Introduction
1.1. The Geometry
1.2. The Equations
2. A Priori Estimates
2.1. Estimate
2.2. Estimate
3. The Limit
4. Example
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blanc, F.; Gipouloux, O.; Panasenko, G.; Zine, A.M. Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure. Math. Models Methods Appl. Sci. 1999, 9, 1351–1378. [Google Scholar] [CrossRef]
- Bourgeat, A.; Marušić-Paloka, E. Non-Linear Effects for flow in periodically constricted channel caused by high injection rate. Math. Models Methods Appl. Sci. 1998, 9, 1–25. [Google Scholar]
- Gipouloux, O.; Marušić-Paloka, E. Asymptotic behaviour of the incompressible Newtonian flow through thin constricted fracture. In Multiscale Problems in Science and Technology; Antonić, N., Duijin, C.J.V., Jaeger, W., Mikelixcx, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 189–202. [Google Scholar]
- Marušić, S.; Marušić-Paloka, E. Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics. Asym. Anal. 2000, 23, 23–57. [Google Scholar]
- Marušić-Paloka, E. Fluid flow through a network of thin pipes. Comptes Rendus Acad. Sci. Paris Sér. II B 2001, 329, 103–108. [Google Scholar] [CrossRef]
- Marušić-Paloka, E. The effects of flexion and torsion for the fluid flow through a curved pipe. Appl. Math. Optim. 2001, 44, 245–272. [Google Scholar] [CrossRef]
- Marušić-Paloka, E. Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 2003, 33, 51–66. [Google Scholar]
- Marušić-Paloka, E.; Pažanin, I. Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 2009, 88, 495–515. [Google Scholar] [CrossRef]
- Marušić-Paloka, E.; Pažanin, I. On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal. Real World Appl. 2010, 11, 4554–4564. [Google Scholar] [CrossRef]
- Marušić-Paloka, E.; Pažanin, I. Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe and the formula for the Darcy–Weisbach friction coefficient. Int. J. Eng. Sci. 2020, 152, 103293. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Piletskas, K.I. The Reynolds flow in a thin three-dimensional channel. Lith. Math. J. 1991, 30, 366–375. [Google Scholar] [CrossRef]
- Ciarlet, P. Plates and Junctions in Elastic Multi-Structures, An Asymptotic Analysis; Recherches en Mathématiques Apliquées; Springer: Berlin/Heidelberg, Germany, 1990; Volume 14. [Google Scholar]
- Le Dret, H. Problèmes Variationnels Dans Les Multi-Domaines; Recherches en Mathématiques Apliquées; Masson: Paris, France, 1991; Volume 19. [Google Scholar]
- Marušić-Paloka, E.; Marušić, S. Computation of the Permeability Tensor for a fluid Flow through a Periodic Net of Thin Channels. Appl. Anal. 1997, 64, 27–37. [Google Scholar] [CrossRef]
- Marušić-Paloka, E.; Pažanin, I. A note on Kirchhoff’s junction rule for power-law fluids. Zeitschrift fur Naturforschung 2015, 70, 695–702. [Google Scholar] [CrossRef]
- Marušić-Paloka, E. Mathematical modeling of junctions in fluid mechanics via two-scale convergence. J. Math. Anal. Appl. 2019, 480, 123399. [Google Scholar] [CrossRef]
- Panasenko, G. Method of asymptotic partial decomposition of domain. Math. Models Methods Appl. Sci. 1998, 8, 139–156. [Google Scholar] [CrossRef]
- Lions, J.L.; Magenes, E. Problèmes aux Limites Non-Homogèenes et Applications; Dunod: Paris, France, 1968; Volume 1. [Google Scholar]
- Marušić-Paloka, E. Solvability of the Navier-Stokes system with L2 boundary data. Appl. Math. Optim. 2000, 41, 365–375. [Google Scholar] [CrossRef]
- Kozlov, V.A.; Mazy’a, V.G.; Movchan, A.B. Asymptotic Analysis of Fields in Multi-Structures; Oxford Science Publications: Oxford, UK, 1999. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marušić-Paloka, E. Modeling 3D–1D Junction via Very-Weak Formulation. Symmetry 2021, 13, 831. https://doi.org/10.3390/sym13050831
Marušić-Paloka E. Modeling 3D–1D Junction via Very-Weak Formulation. Symmetry. 2021; 13(5):831. https://doi.org/10.3390/sym13050831
Chicago/Turabian StyleMarušić-Paloka, Eduard. 2021. "Modeling 3D–1D Junction via Very-Weak Formulation" Symmetry 13, no. 5: 831. https://doi.org/10.3390/sym13050831
APA StyleMarušić-Paloka, E. (2021). Modeling 3D–1D Junction via Very-Weak Formulation. Symmetry, 13(5), 831. https://doi.org/10.3390/sym13050831