Boundary Value Problems of Hadamard Fractional Differential Equations of Variable Order
Abstract
:1. Introduction
2. Preliminaries
- -
- The set I is called a generalized interval if it is either an interval or a point or the empty set.
- -
- The finite set of generalized intervals is called a partition of I if each x in I lies in exactly one of the generalized intervals E in .
- -
- The function is called a piecewise constant with respect to partition of I if for any , g is constant on E.
- is relatively compact.
- .
- .
- .
- .
- .
- .
- .
- for any .
- (i)
- the function is continuous for , and
- (ii)
3. Existence of Solutions of BVP for VOHFDE
4. Ulam–Hyers–Rassias Stability of VOHFDE
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdeljawad, A.; Agarwal, R.P.; Karapinar, E.; Kumari, P.S. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-Metric Space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differenatial Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- de Oliveira, E.C.; Sousa, J.; Sousa, J.V.D. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- Chikh, S.B.; Amara, A.; Etemad, S.; Rezapour, S. On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions. Adv. Differ. Eq. 2020, 2020, 680. [Google Scholar] [CrossRef]
- Jiahui, A.; Pengyu, C. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Syst. Appl. 2019, 28, 607–623. [Google Scholar]
- Ragusa, M.A. Embeddings for Morrey-Lorentz spaces. J. Optim. Theory Appl. 2012, 154, 491–499. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Samko, S.G.; Boss, B. Integration and differentiation to a variable fractional order. Integr. Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Zhang, S. Existence of solutions for two point boundary value problems with singular differential equations of variable order. Elect. J. Differ. Eq. 2013, 245, 1–16. [Google Scholar]
- Zhang, S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. 2020, A476, 20190498. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.G.; Chang, A.; Zhang, Y.; Chen, W. A review on variable order fractional differential equations: Mathematical foundations, Physical models, numerical methods and applications. Frac. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Starrett, J. Solving differential equations by symmetry groups. Mar. Math. Mon. 2007, 114, 778–792. [Google Scholar] [CrossRef]
- Chatibi, Y.; Kinani, E.H.E.; Ouhadan, A. Lie symmetry analysis of conformable differential equations. AIMS Math. 2019, 4, 1133–1144. [Google Scholar] [CrossRef]
- Adiguzel, R.S.; Aksoy, U.; Karapınar, E.; Erhan, I.M. On the solution of a boundary value problem associated with a fractional differential equation. Math. Meth. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Afshari, H.; Karapınar, E. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Eq. 2020, 2020, 616. [Google Scholar] [CrossRef]
- Zada, A.; Alzabut, J.; Waheed, H.; Popa, I.-L. Ulam—Hyers stability of impulsive integro-differential equations with Riemann–Liouville boundary conditions. Adv. Differ. Eq. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.F.G. Analytical and numerical solutions of nonlinear alcoholism model via variable-order fractional differential equations. Phys. A 2018, 494, 52–57. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliverira, E.C. Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput. Appl. Math. 2018, 37, 5375–5394. [Google Scholar] [CrossRef]
- Tavares, D.; Almeida, R.; Torres, D.F. Caputo derivatives of fractional variable order Numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 6987. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, L. Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. Mathematics 2019, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sun, S.; Hu, L. The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. Mat. 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’étude des fonctions, données par leur développement de Taylor. J. Mat. Pure Appl. Ser. 1892, 4, 101–186. [Google Scholar]
- Almeida, R.; Torres, D.F.M. Computing Hadamard type operators of variable fractional order. Appl. Math. Comput. 2015, 257, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Kong, H. Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. J. Nonlinear Sci. Appl. 2017, 10, 5744–5752. [Google Scholar] [CrossRef] [Green Version]
- Lavenda, B.H. Concepts of Stability and Symmetry in Irreversible Thermodynamics. I. Found. Phys. 1972, 2, 161–179. [Google Scholar] [CrossRef]
- Gallavotti, G. Breakdown and regeneration of time reversal symmetry in nonequilibrium statistical mechanics. Phys. D 1998, 112, 250–257. [Google Scholar] [CrossRef]
- Russo, G.; Slotine, J.-J.E. Symmetries, stability, and control in nonlinear systems and networks. Phys. Rev. E 2011, 84, 041929. [Google Scholar] [CrossRef] [Green Version]
- Banás, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Banaś, J.; Olszowy, L. Measures of noncompactness related to monotonicity. Comment. Math. (Prace Mat.) 2001, 41, 13–23. [Google Scholar]
- Guo, D.J.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Lazreg, J.E.; Nieto, J.J. Nonlinear implicit Hadamard’s fractional differential equations with delay in Banach Space. Acta Uni. Palacki. Olomuc. Facult. Rerum Natur. Math. 2016, 55, 15–26. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary Value Problems of Hadamard Fractional Differential Equations of Variable Order. Symmetry 2021, 13, 896. https://doi.org/10.3390/sym13050896
Hristova S, Benkerrouche A, Souid MS, Hakem A. Boundary Value Problems of Hadamard Fractional Differential Equations of Variable Order. Symmetry. 2021; 13(5):896. https://doi.org/10.3390/sym13050896
Chicago/Turabian StyleHristova, Snezhana, Amar Benkerrouche, Mohammed Said Souid, and Ali Hakem. 2021. "Boundary Value Problems of Hadamard Fractional Differential Equations of Variable Order" Symmetry 13, no. 5: 896. https://doi.org/10.3390/sym13050896
APA StyleHristova, S., Benkerrouche, A., Souid, M. S., & Hakem, A. (2021). Boundary Value Problems of Hadamard Fractional Differential Equations of Variable Order. Symmetry, 13(5), 896. https://doi.org/10.3390/sym13050896