Many-Electron QED with Redefined Vacuum Approach
Abstract
:1. Introduction
2. General Formulation and Method
3. Perturbation Theory
3.1. Electron States
3.2. Hole States
4. Many-Electron QED
4.1. First-Order Contributions
4.2. Second-Order Contributions
4.2.1. Screened Radiative Corrections
4.2.2. Two-Photon-Exchange Correction
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Gauge-Invariant Subsets of the Screened Radiative Diagrams
Appendix B. Gauge-Invariant Subsets of the Two-Photon-Exchange Diagrams
Appendix C. Two-Photon Exchange: Comparison between QED and RMBPT
References
- Furry, W.H. On Bound States and Scattering in Positron Theory. Phys. Rev. 1951, 81, 115. [Google Scholar] [CrossRef]
- Kozlov, M.G.; Safronova, M.S.; Crespo López-Urrutia, J.R.; Schmidt, P.O. Highly charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef] [Green Version]
- Karshenboim, S.G. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 2005, 422, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, V.A.; Shabaev, V.M. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data 2015, 44, 033103. [Google Scholar] [CrossRef]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA Recommended Values of the Fundamental Physical Constants: 2014. J. Phys. Chem. Ref. Data 2016, 45, 043102. [Google Scholar] [CrossRef] [Green Version]
- Pohl, R.; Antognini, A.; Nez, F.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Fernandes, L.M.P.; et al. The size of the proton. Nature 2010, 466, 213. [Google Scholar] [CrossRef] [PubMed]
- Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Diepold, M.; et al. Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen. Science 2013, 339, 417–420. [Google Scholar] [CrossRef]
- Karr, J.P.; Marchand, D.; Voutier, E. The proton size. Nat. Rev. Phys. 2020, 2, 601. [Google Scholar] [CrossRef]
- Puchalski, M.; Szalewicz, K.; Lesiuk, M.; Jeziorski, B. QED calculation of the dipole polarizability of helium atom. Phys. Rev. A 2020, 101, 022505. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, V.A.; Patkóš, V.; Puchalski, M.; Pachucki, K. QED calculation of ionization energies of 1snd states in helium. Phys. Rev. A 2020, 102, 012807. [Google Scholar] [CrossRef]
- Patkóš, V.; Yerokhin, V.A.; Pachucki, K. Complete α7m Lamb shift of helium triplet states. Phys. Rev. A 2021, 103, 042809. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, Y.; Chen, J.J.; Jiang, W.; Pachucki, K.; Hu, S.M. Measurement of the Frequency of the 23S − 23P Transition of 4He. Phys. Rev. Lett. 2017, 119, 263002. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.F.; Ross, J.A.; Henson, B.M.; Shin, D.K.; Baldwin, K.G.H.; Hodgman, S.S.; Truscott, A.G. Direct Measurement of the Forbidden 23S1 → 33S1 Atomic Transition in Helium. Phys. Rev. Lett. 2020, 125, 013002. [Google Scholar] [CrossRef]
- Pachucki, K.; Sapirstein, J. Determination of the fine structure constant from helium spectroscopy. J. Phys. B 2002, 35, 1783–1793. [Google Scholar] [CrossRef]
- Pachucki, K.; Patkóš, V.; Yerokhin, V.A. Testing fundamental interactions on the helium atom. Phys. Rev. A 2017, 95, 062510. [Google Scholar] [CrossRef] [Green Version]
- Gumberidze, A.; Stöhlker, T.; Banaś, D.; Beckert, K.; Beller, P.; Beyer, H.F.; Bosch, F.; Hagmann, S.; Kozhuharov, C.; Liesen, D.; et al. Quantum electrodynamics in strong electric fields: The ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 2005, 94, 223001. [Google Scholar] [CrossRef] [Green Version]
- Indelicato, P. QED tests with highly charged ions. J. Phys. B 2019, 52, 232001. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, V.A.; Indelicato, P.; Shabaev, V.M. Two-loop self-energy correction in high-Z hydrogenlike ions. Phys. Rev. Lett. 2003, 91, 073001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassner, T.; Trassinelli, M.; Heß, R.; Spillmann, U.; Banaś, D.; Blumenhagen, K.H.; Bosch, F.; Brandau, C.; Chen, W.; Dimopoulou, C.; et al. Wavelength-dispersive spectroscopy in the hard x-ray regime of a heavy highly-charged ion: The 1s Lamb shift in hydrogen-like gold. New J. Phys. 2018, 20, 073033. [Google Scholar] [CrossRef]
- Gumberidze, A.; on behalf of the SPARC Collaboration. Atomic physics at the future facility for antiproton and ion research: A status report. Phys. Scr. 2013, T156, 014084. [Google Scholar] [CrossRef]
- Blundell, S.A.; Mohr, P.J.; Johnson, W.R.; Sapirstein, J. Evaluation of two-photon exchange graphs for highly charged heliumlike ions. Phys. Rev. A 1993, 48, 2615. [Google Scholar] [CrossRef]
- Persson, H.; Salomonson, S.; Sunnergren, P.; Lindgren, I. Two-electron Lamb-shift calculations on heliumlike ions. Phys. Rev. Lett. 1996, 76, 204. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.J.; Sapirstein, J. Evaluation of two-photon exchange graphs for excited states of highly charged heliumlike ions. Phys. Rev. A 2000, 62, 052501. [Google Scholar] [CrossRef]
- Artemyev, A.N.; Shabaev, V.M.; Yerokhin, V.A.; Plunien, G.; Soff, G. QED calculation of the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 2005, 71, 062104. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, A.V.; Kozhedub, Y.S.; Glazov, D.A.; Tupitsyn, I.I.; Shabaev, V.M. QED calculations of the n = 2 to n = 1 x-ray transition energies in middle-Z heliumlike ions. Phys. Rev. A 2019, 99, 010501. [Google Scholar] [CrossRef] [Green Version]
- Kozhedub, Y.S.; Malyshev, A.V.; Glazov, D.A.; Shabaev, V.M.; Tupitsyn, I.I. QED calculation of electron-electron correlation effects in heliumlike ions. Phys. Rev. A 2019, 100, 062506. [Google Scholar] [CrossRef] [Green Version]
- Sapirstein, J.; Cheng, K.T. Determination of the two-loop Lamb shift in lithiumlike bismuth. Phys. Rev. A 2001, 64, 022502. [Google Scholar] [CrossRef]
- Yerokhin, V.A.; Artemyev, A.N.; Shabaev, V.M.; Sysak, M.M.; Zherebtsov, O.M.; Soff, G. Evaluation of the two-photon exchange graphs for the 2p1/2 − 2s transition in Li-like ions. Phys. Rev. A 2001, 64, 032109. [Google Scholar] [CrossRef]
- Artemyev, A.N.; Shabaev, V.M.; Sysak, M.M.; Yerokhin, V.A.; Beier, T.; Plunien, G.; Soff, G. Evaluation of the two-photon exchange diagrams for the (1s)22p3/2 electron configuration in Li-like ions. Phys. Rev. A 2003, 67, 062506. [Google Scholar] [CrossRef] [Green Version]
- Sapirstein, J.; Cheng, K.T. S-matrix calculations of energy levels of the lithium isoelectronic sequence. Phys. Rev. A 2011, 83, 012504. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, A.V.; Volotka, A.V.; Glazov, D.A.; Tupitsyn, I.I.; Shabaev, V.M.; Plunien, G. QED calculation of the ground-state energy of berylliumlike ions. Phys. Rev. A 2014, 90, 062517. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, A.V.; Volotka, A.V.; Glazov, D.A.; Tupitsyn, I.I.; Shabaev, V.M.; Plunien, G. Ionization energies along beryllium isoelectronic sequence. Phys. Rev. A 2015, 92, 012514. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, A.V.; Glazov, D.A.; Kozhedub, Y.S.; Anisimova, I.S.; Kaygorodov, M.Y.; Shabaev, V.M.; Tupitsyn, I.I. Ab initio Calculations of Energy Levels in Be-Like Xenon: Strong Interference between Electron-Correlation and QED Effects. Phys. Rev. Lett. 2021, 126, 183001. [Google Scholar] [CrossRef]
- Artemyev, A.N.; Shabaev, V.M.; Tupitsyn, I.I.; Plunien, G.; Yerokhin, V.A. QED calculation of the 2p3/2 − 2p1/2 transition energy in boronlike argon. Phys. Rev. Lett. 2007, 98, 173004. [Google Scholar] [CrossRef] [Green Version]
- Artemyev, A.N.; Shabaev, V.M.; Tupitsyn, I.I.; Plunien, G.; Surzhykov, A.; Fritzsche, S. Ab initio calculations of the 2p3/2 − 2p1/2 fine-structure splitting in boronlike ions. Phys. Rev. A 2013, 88, 032518. [Google Scholar] [CrossRef]
- Malyshev, A.V.; Glazov, D.A.; Volotka, A.V.; Tupitsyn, I.I.; Shabaev, V.M.; Plunien, G.; Stöhlker, T. Ground-state ionization energies of boronlike ions. Phys. Rev. A 2017, 96, 022512. [Google Scholar] [CrossRef] [Green Version]
- Sapirstein, J.; Cheng, K.T. S-matrix calculations of energy levels of sodiumlike ions. Phys. Rev. A 2015, 91, 062508. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer: Berlin, Germany, 1985. [Google Scholar]
- Avgoustoglou, E.; Johnson, W.; Plante, D.; Sapirstein, J.; Sheinerman, S.; Blundell, S. Many-body perturbation-theory formulas for energy levels of excited states of closed-shell atoms. Phys. Rev. A 1992, 46, 5478. [Google Scholar] [CrossRef]
- Johnson, W.R.; Sapirstein, J.; Cheng, K.T. Theory of 2s1/2-2p3/2 transitions in highly ionized uranium. Phys. Rev. A 1995, 51, 297–302. [Google Scholar] [CrossRef]
- Johnson, W.R. Atomic Structure Theory. Lectures on Atomic Physics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shabaev, V.M. Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 2002, 356, 119. [Google Scholar] [CrossRef] [Green Version]
- Soguel, R.N.; Volotka, A.V.; Tryapitsyna, E.V.; Glazov, D.A.; Kosheleva, V.P.; Fritzsche, S. Redefined vacuum approach and gauge-invariant subsets in two-photon-exchange diagrams for a closed-shell system with a valence electron. Phys. Rev. A 2021, 103, 042818. [Google Scholar] [CrossRef]
- Li, M.C.; Si, R.; Brage, T.; Hutton, R.; Zou, Y.M. Proposal of highly accurate tests of Breit and QED effects in the ground state 2p5 of the F-like isoelectronic sequence. Phys. Rev. A 2018, 98, 020502. [Google Scholar] [CrossRef]
- Volotka, A.V.; Bilal, M.; Beerwerth, R.; Ma, X.; Stöhlker, T.; Fritzsche, S. QED radiative corrections to the 2P1/2 − 2P3/2 fine structure in fluorinelike ions. Phys. Rev. A 2019, 100, 010502. [Google Scholar] [CrossRef] [Green Version]
- Shabaev, V.; Tupitsyn, I.; Kaygorodov, M.; Kozhedub, Y.; Malyshev, A.; Mironova, D. QED corrections to the 2P1/2 − 2P3/2 fine structure in fluorinelike ions: Model Lamb-shift-operator approach. Phys. Rev. A 2020, 101, 052502. [Google Scholar] [CrossRef]
- O’Neil, G.; Sanders, S.; Szypryt, P.; Gall, A.; Yang, Y.; Brewer, S.M.; Doriese, R.; Fowler, J.; Naing, A.; Swetz, D.; et al. Measurement of the 2P1/2 − 2P3/2 fine-structure splitting in fluorinelike Kr, W, Re, Os, and Ir. Phys. Rev. A 2020, 102, 032803. [Google Scholar] [CrossRef]
- Lu, Q.; Yan, C.L.; Xu, G.Q.; Fu, N.; Yang, Y.; Zou, Y.; Volotka, A.V.; Xiao, J.; Nakamura, N.; Hutton, R. Direct measurements for the fine-structure splitting of S viii and Cl ix. Phys. Rev. A 2020, 102, 042817. [Google Scholar] [CrossRef]
- Shabaev, V.M. Quantum electrodynamic theory of multiply charged ions. Sov. Phys. J. 1990, 33, 660–670. [Google Scholar] [CrossRef]
- Mohr, P.J.; Plunien, G.; Soff, G. QED corrections in heavy atoms. Phys. Rep. 1998, 293, 227. [Google Scholar] [CrossRef]
- Lindgren, I.; Salomonson, S.; Åsén, B. The covariant-evolution-operator method in bound-state QED. Phys. Rep. 2004, 389, 161. [Google Scholar] [CrossRef]
- Yu, O.A.; Labzowsky, L.N.; Plunien, G.; Solovyev, D.A. QED theory of the spectral line profile and its applications to atoms and ions. Phys. Rep. 2008, 455, 135. [Google Scholar]
- Dzuba, V.A.; Flambaum, V.V.; Schiller, S. Testing physics beyond the standard model through additional clock transitions in neutral ytterbium. Phys. Rev. A 2018, 98, 022501. [Google Scholar] [CrossRef] [Green Version]
- Si, R.; Guo, X.L.; Brage, T.; Chen, C.Y.; Hutton, R.; Froese Fischer, C. Breit and QED effects on the 3d92D3/2 → 2D5/2 transition energy in Co-like ions. Phys. Rev. A 2018, 98, 012504. [Google Scholar] [CrossRef] [Green Version]
- Imanbaeva, R.T.; Kozlov, M.G. Configuration Interaction and Many-Body Perturbation Theory: Application to Scandium, Titanium, and Iodine. Ann. Phys. 2019, 531, 1800253. [Google Scholar] [CrossRef]
- Cheung, C.; Safronova, M.S.; Porsev, S.G.; Kozlov, M.G.; Tupitsyn, I.I.; Bondarev, A.I. Accurate Prediction of Clock Transitions in a Highly Charged Ion with Complex Electronic Structure. Phys. Rev. Lett. 2020, 124, 163001. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Gaigalas, G.; Bieroń, J.; Froese Fischer, C.; Grant, I.P. New version: Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.; Porsev, S.; Safronova, M.; Tupitsyn, I. CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory. Comput. Phys. Commun. 2015, 195, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comput. Phys. Commun. 2019, 240, 1. [Google Scholar] [CrossRef]
- Cheung, C.; Safronova, M.; Porsev, S. Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems. Symmetry 2021, 13, 621. [Google Scholar] [CrossRef]
- Dzuba, V. Calculation of Polarizabilities for Atoms with Open Shells. Symmetry 2020, 12, 1950. [Google Scholar] [CrossRef]
- Fritzsche, S.; Palmeri, P.; Schippers, S. Atomic Cascade Computations. Symmetry 2021, 13, 520. [Google Scholar] [CrossRef]
- Ginges, J.S.M.; Berengut, J.C. Atomic many-body effects and Lamb shifts in alkali metals. Phys. Rev. A 2016, 93, 052509. [Google Scholar] [CrossRef] [Green Version]
- Tupitsyn, I.I.; Kozlov, M.G.; Safronova, M.S.; Shabaev, V.M.; Dzuba, V.A. Quantum Electrodynamical Shifts in Multivalent Heavy Ions. Phys. Rev. Lett. 2016, 117, 253001. [Google Scholar] [CrossRef]
- Layzer, D.; Bahcall, J. Relativistic Z-Dependent Theory of Many-Electron Atoms. Ann. Phys. 1962, 17, 177. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soguel, R.N.; Volotka, A.V.; Glazov, D.A.; Fritzsche, S. Many-Electron QED with Redefined Vacuum Approach. Symmetry 2021, 13, 1014. https://doi.org/10.3390/sym13061014
Soguel RN, Volotka AV, Glazov DA, Fritzsche S. Many-Electron QED with Redefined Vacuum Approach. Symmetry. 2021; 13(6):1014. https://doi.org/10.3390/sym13061014
Chicago/Turabian StyleSoguel, Romain N., Andrey V. Volotka, Dmitry A. Glazov, and Stephan Fritzsche. 2021. "Many-Electron QED with Redefined Vacuum Approach" Symmetry 13, no. 6: 1014. https://doi.org/10.3390/sym13061014
APA StyleSoguel, R. N., Volotka, A. V., Glazov, D. A., & Fritzsche, S. (2021). Many-Electron QED with Redefined Vacuum Approach. Symmetry, 13(6), 1014. https://doi.org/10.3390/sym13061014