Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution
Abstract
:1. Introduction and Motivation
2. Definitions and Preliminaries
- (i)
- If then where
- (ii)
- If then where
3. A Set of Lemmas
4. Main Results and Their Consequences
5. Further Remarks and Observations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Deeb, S.M.; Murugusundaramoorthy, G.; Alburaikan, A. Bi-Bazilevič functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; El-Deeb, S.M. Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type Borel distribution related with Legendre polynomials. Turkish World Math. Soc. J. Appl. Engrg. Math. 2021, in press. [Google Scholar]
- Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Lupaş, A.A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Craiova Ser. Mat. Inform. 2020, 27, 133–140. [Google Scholar]
- El-Deeb, S.M.; Oros, G. Fuzzy differential subordinations connected with the linear operator. Math. Bohem. 2021. [Google Scholar] [CrossRef]
- Lupaş, A.A. A note on special fuzzy differential subordinations using generalized Săla̧gean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Lupaş, A.A. On special fuzzy differential subordinations using convolution product of Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1484–1489. [Google Scholar]
- Lupaş, A.A.; Oros, G. On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. The notation of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis Math. Inform. No. 2012, 30, 55–64. [Google Scholar]
- Oros, G.I.; Oros, G. Dominant and best dominant for fuzzy differential subordinations. Stud. Univ. Babeş-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Wanas, A.K. Fuzzy differential subordinations of analytic functions invloving Wanas operator. Ikonian J. Math. 2020, 2, 1–9. [Google Scholar]
- Eş, A.H. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar]
- Laengle, S.; Lobos, V.; Merigó, J.M.; Herrera-Viedma, E.; Cobo, M.J.; de Baets, B. Forty years of fuzzy sets and systems: A bibliometric analysis. Fuzzy Sets Syst. 2021, 402, 155–183. [Google Scholar] [CrossRef]
- Lupaş, A.A. A note on special fuzzy differential subordinations using multiplier transformation. An. Univ. Oradea Fasc. Mat. 2016, 23, 183–191. [Google Scholar]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Statist. 2021, 70, 229–240. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Bulboacă, T. Differential Subordinations and Superordinations: Recent Results; House of Scientific Book Publishing: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Srivastava, H.M.; Prajapati, A.; Gochhayat, P. Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator. Appl. Math. Inform. Sci. 2018, 12, 469–481. [Google Scholar] [CrossRef]
- Gal, S.G.; Ban, A.I. Elemente de Matematica Fuzzy; Editura Universitatea din Oradea: Oradea, Romania, 1996. [Google Scholar]
- Grimmett, G.R.; Stirzaker, D.R. Probability and Random Processes, 4th ed.; Oxford University Press: Oxford, UK; London, UK; New York, NY, USA, 2020. [Google Scholar]
- Allen, L.J.S. An Introduction to Stochastic Processes with Applications to Biology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). C R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellun der Funcktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Srivastava, H.M. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discrete Math. 2007, 1, 56–71. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Attiya, A.A. Some Applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babeş-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. An application of an operator associated with generalized Mittag-Leffler function. Konuralp J. Math. 2019, 7, 199–202. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics; Longman Scientific and Technical: Harlow, UK, 1993; Volume 301. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Srivastava, H.M.; Bansal, M.K.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Methods Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; El-Deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. https://doi.org/10.3390/sym13061023
Srivastava HM, El-Deeb SM. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry. 2021; 13(6):1023. https://doi.org/10.3390/sym13061023
Chicago/Turabian StyleSrivastava, Hari Mohan, and Sheza M. El-Deeb. 2021. "Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution" Symmetry 13, no. 6: 1023. https://doi.org/10.3390/sym13061023
APA StyleSrivastava, H. M., & El-Deeb, S. M. (2021). Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry, 13(6), 1023. https://doi.org/10.3390/sym13061023